CURTIN
UNIVERSITY
OF TECHNOLOGY

MAHIDOL Computational Mathematics and Modeling (CMM 2002)
UMNIVERSITY

Generalization of Clauses Containing Cross Connections

Chotiros Surapholchai *, Boonserm Kijsirikul 2, Mark E. Hall 3
nstitute of Computer Science, University of Heidelberg, Heidelberg, Germany
Chotiros.Surapholchai @I nfor matik.Uni-Heidelberg.De
Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand
Boonserm.K@chula.ac.th
3Department of Mathematics and Computer Science, Hastings College,NE, USA
mhall @hastings.edu

ABSTRACT

In the area of inductive learning, generalization is the main operation, and the usual definition
of induction is based on logical implication. Plotkin's well-known technique for computing least
general generalizations of clauses under 8-subsumption sometimes produces results which are
too general with respect to implication. Muggleton has shown that this problem only occursin
one type of generalization of recursive clauses, called an indirect root. Idestam-Almquist
presented a technique, called recursive anti-unification, to compute indirect roots of clauses.
However there exist cases for which recursive anti-unification does not work, for example, the
clauses which contain a structure called a cross connection.

In this paper, we develop a technique for computing indirect roots of Horn clauses. We first
introduce a relation equivalent to the implication, called @-proof, which is syntactically defined,
using resolution and @-subsumption. Thisleadsto an algorithm, the J-algorithm, for computing
indirect roots of clauses. The roots of clauses containing cross connections can be computed by
the J-algorithm. We also prove that the output from the algorithm is a generalization under
implication of theinput.

KEYWORDS - Generdization, 6-subsumption, Implication, 6-proof, J-algorithm, Indirect root,
Cross connection

1. Introduction

In the area of inductive learning, generdization is the main operation, and the usua definition of induction is
based on logical implication. Least general generalizations are of special interest since they are known to be
correct whenever there exist correct generalizations. In recent years there has been a rising interest in clausal
representation of knowledge in machine learning. Plotkin [8] has already described a technique for computation
of least general generaizations of clauses under 6-subsumption. Unfortunately, the results obtained by this
technique are sometimes too general with respect to implication.

The difference between 6-subsumption and logical implication is important since amost al inductive learners
that use clausal representations perform generalization under 6-subsumption rather than generalization under
implication. The main reason is that there is a well known and reasonably efficient technique to compute least
general generalizations under 6-subsumption, but not under implication.

Plotkin himself realized that generalization under 6-subsumption was incomplete for a certain type of clause
known as a recursive clause. Recursion is an important program structure in logic programming. The ability to
learn recursive clauses is therefore crucial when using a clausa representation. In [6] it is shown that the
incompleteness of generalization under 6-subsumption only concerns one type of generalization of recursive
clauses, which is often called an indirect root.

CURTIN
— — UNIVERSITY
=T 0F TECHNOLOGY

' MAHIDOL Computational Mathematics and Modeling (CMM 2002)
s UNIVERSITY

Idestam-Almquist [2] described the well known technique to compute least general generalizations under 6-
subsumption and the most important theoretical results connected with it. He studied the theory of generalization
under implication, and noted that implication between clauses is undecidable. He therefore introduced a stronger
form of implication, called T-implication, which is decidable between clauses. He showed that for every finite
set of clauses there exists a least general generalization under T-implication. Finally, he presented a technique,
called recursive anti-unification, to compute indirect roots of clauses. Recursive anti-unification is a
generalization of anti-unification, which isthe usual technique for computing least general generalizations under
6-subsumption.

However, there exist cases for which recursive anti-unification does not work, cases where at least one of the
clauses contains a structure called a cross connection. We will describe a technique, caled the J-algorithm, to
compute indirect roots of clauses. By this technique we can even compute roots of clauses containing cross
connections, which are guaranteed to be generalizations under implication.

In this work we will only consider Horn clauses. In Section 2 background on generalization under 6-
subsumption of clausesisgiven, and in Section 3 generalization under implication and 6-proof are discussed. In
Section 4 we describe the cross connection and give our technique, the J-algorithm, for computing indirect roots
of clauses containing the cross connection. Finally, concluding remarks are given in Section 5.

2. Generalization under 8-subsumption

In this section we will describe the framework for generalization of clauses developed by Plotkin. This
framework is based on a generdlity relation as 6-subsumption.

Definition 1. Let C and D be clauses. Then C 8-subsumes D, denoted by C < D, if and only if there exists a
substitution 8 suchthat CO U D. We also say that C isageneralization under 8-subsumption of D.

Proposition 2. 6-subsumption is reflexive and transitive.

Example. Consider the following clauses:
C=(< p(f(y)), p(),

D =(a(y) ~ p(f(y)), and
E=(q(a - p(f(a)), r(b)).

We have C < C since every clause is a subset of itself. We also have C < D since CO O D where 8 = {x/f(y)},
and D <EsinceDo O E, where g ={y/a}. Then C< E, since C6c 0 E.

Two clauses may 6-subsume each other without being variants. In other words, 6-subsumption is not anti-
Ssymmetric.

Definition 3. Let C and D be clauses. Then C and D are equivalent under 8-subsumption, denoted C 0D, if
andonlyif C<xDandD < C.

Example. Consider the following clauses:
C=(p(@ - q(a), a(x).

D = (p(a), p(y) ~ q(@), and

E=(p(@ - q(a)-

Then we have C 0D since C{x/a} O D and D{y/a} O C. We aso have C JE and D OE. Hence, al three clauses
are equivaent under 6-subsumption. Note that no two of these clauses are variants.

We are particularly interested in least generd generalizations. As already mentioned in Section 1, least general
generalization under 6-subsumption is the most commonly used form of generalization of clauses.

Definition 4. A clause C is ageneralization under 8-subsumption of a set of clauses S={D,D,...,D,} if and
only if C< D; for every 1 <i < n. A generalization under 6-subsumption C of Sisaleast general generalization
under 8-subsumption (LGG®8) of Sif and only if C' < C for every generalization under 6-subsumption C'of S

CURTIN
UNIVERSITY
OF TECHNOLOGY

MAHIDOL Computational Mathematics and Modeling (CMM 2002)
UMNIVERSITY

Example. Consider the following clauses:
C=(p(b) ~ q(b)),

D =(p(a@ - q(@. a(b)),

E=(p() « a(x), a(b)), and

F=(p() - a(). ab), a@).

Both clausesE and F are LGGOs of {C,D}.

In general, an LGGAis not unique, as shown by the example above. Plotkin showed that there exists an LGGE of
every finite set of clauses, aresult which is not obvious.

3. Generalization under Implication and é-proof

In this section we will study the theory of generalization under implication. We note that implication is difficult
to work with, and therefore we will introduce a relation equivalent to implication, call 6-proof.

3.1 Implication

Implication is the most natural and straightforward basis for generalization, since the concept of inductive
conclusion isdefined in terms of logical consegquence.

Definition 5. Let C and D be clauses. Then Cimplies D, denoted C 0 D, if and only if every model for C isalso
amodel for D (i.e., {C} ED). We adso say that C isageneralization under implication of D.

Example. Consider the following clauses:
C=(p(¥) ~ p(f(x)),

D =(p(¥) « p(f %)),

E=(p() - p(f%y))), and

F=(p() « p(f ().

Then we have that both C and E imply both D and F, but C does not 6-subsume D, and neither C impliesE nor E
implies C.

Proposition 6. Let C;,C;,...,C,D1,D;.,...,.Dy, and E be clauses. If {C,,C,,...,.CG} B D; for al j 0{1,2,...n} and
{D4,D»,...,.D,} BIE, then{C,,C,,...,.Ci} EE.

Proposition 7. Implication isreflexive and transitive.

As in the case of 6-subsumption, implication between clauses is not anti-symmetric. Also, two clauses may be
equivalent under implication without being equivalent under 8-subsumption.

Definition 8. Let C and D be clauses. Then C and D are equivalent under implication, denoted C = D, if and
onlyif CO DandD O C.

Example. Consider the following clauses:
C=(p(), ply) P(f(X)), p(f *(y))), and
D=(p@ - p(F*2)).

Thenwe have C = D. Wealso havethat D 68-subsumes C, but C does not 6-subsume D.

The above example also shows that if a clause C implies aclause D then C does not necessary 6-subsumeD. It is
well known that implication isa strictly weaker relation between clauses than 6-subsumption.

Proposition 9. Let Cand D beclauses. If C< D, thenC O D.

Since there is no least genera generalization of Horn clauses under implication, we instead turn our interest to
minimally general generalizations under implication in the next definition.

CURTIN
— — UNIVERSITY
=T 0F TECHNOLOGY

' MAHIDOL Computational Mathematics and Modeling (CMM 2002)
s UNIVERSITY

Definition 10. A Horn clause C is a minimally general generalization under implication (MinGGI) of two
Horn clauses D and E if and only if:

aCl DandCO E,and

b) for each Horn clause F suchthat FO D,FO0 EandC O F,weasohaveF O C.

Example. Consider the following clauses:
C=(p(a) - p(f(a))),

D = (p(b) — p(f %(b))),

E=(p(x) < p(f(y))), and

F=(@ - p(f(2)).

The clause E isan LGGE of {C,D}, and F is an MinGGl of {C,D}. The MinGGl is strictly more specific than
the LGG®, since E implies F, but F does not imply E.

Example. Consider the following clauses:
C=(p(X) < p(f(x)),

D =(p(x) p(f (),

E=(p(¥) ~ p(f(y))), and

F=(p() p(f ().

The both clause C and clause E are MinGGl’s of D and F.

3.2 B-proof

Definition 11. Let H be a set of clauses and B a clause. We say that H 8-proves B if and only if thereis a
sequence Ag,AyA;,...,A, of clauses such that each A is either an element of H, or follows from A and A, by
resolution for somej,k <i, and in addition A, 8-subsumes B. We will write H & B if and only if H 6-proves B.
If H={A}, we often write A & B, and say A 6-proves B.

The following lemmais used to make it easier to prove the next theorem.

Lemma 12. Let H be a set of clauses, and let ¢y,c;,...,Cry be constant symbols which do not appear in any of the
clauses of H. Suppose we have a sequence By,B;,...,B, of clauses such that for each i either B; OH or there exist j,
| <i such that B; follows from B; and B, by resolution.

Let y1,Y2,....¥m be variables which do not occur in any of the clauses By,Bs,...,Bn. For each i, construct Bj by
replacing all occurrences of ¢ with y;, for j = 1,2,...,m. Then for each i either Bf O H or there exist j, | <i such
that B; follows from Bj and Bj by resol ution.

The following theorem shows that implication and 6-proof are equivalent.

Theorem 13. Let H be afinite set of clauses and C a clause whichisnot valid. Then H ECif andonly if H B, C.
Proof. The proof isgivenin [10].

The previous theorem is similar to Theorem 4 in the paper by Nienhuys-Cheng and de Wolf [7], but the proof is

different. Our proof in [10] has the advantage that in some ways it is more direct, and is done &l in one case,
whereas the proof in [7] uses three cases, two concerning ground clauses, and then the general case.

Collorary 14. Let C,,C,,...,C,D1,D,...,.Dn and E be clauses. If {C,,C,,...,C} By D; for al j O {1,2,...,n} and
{D4,Ds,...,.Dn} BHE, then{C,;,C,,....C} Ep E.

Callorary 15. 6-proof isreflexive and transitive
4. Cross Connection and the J-Algorithm
Idestam-Almquist’ s technique to compute expansions can reduce most indirect roots (see the definition below) to

generdizations under 6-subsumption, but it only works when there are structura regularities called internal
and/or externa connections in the given clauses [2]. Such structura regularities tell how appropriate linear

CURTIN
— — UNIVERSITY
=T 0F TECHNOLOGY

' MAHIDOL Computational Mathematics and Modeling (CMM 2002)
s UNIVERSITY

expansions can be computed. However, there are proper linear indirect roots of clauses for which it is not
possible to find any appropriate linear expansions by his technique. Such linear indirect roots have a kind of
structure he called cross connections.

4.1 Cross Connection

Definition 16. Let (A,~B) be an ambivalent pair of literalsin aclause C, satermin position pin Aand t aterm
in position g in B. Then a sequence of terms K = [s,5;,...,S] IS @ €ross connection with structure rrfrom stot if
and only if:

a) sg=sands, =t,

b) pisnot asubposition of q nor is q a subposition of p, and

¢) m=[(Pw.0w).,(P2,%),---.(Pr:0n)] IS @ Sequence of pairs of positions such that for each 0 <i < (n-1) thereisalitera
L; O Csuchthat s isfoundin position p;,; in L and s, isfound in position ;.1 in L.

Example. Consider the following clauses:

C= (p(X,U) A CI(X,y), r(U,V), p(V,y)),

D = (p(x,u) — q(v.w), r(y,2), p(kil)), and
E=(p(xu) « a(xy), r(y,2, ruyv), a(v,w), pizw)).

In the clause C thereis a cross connection K; = [x,y] with structure i = [(<(-q,1)>,<(-q,2)>)] from the term x
in the literal p(x,u) to the term y in the literd - p(v,y), and a cross connection K, = [u,v] with structure 75 =
[(<(=r,)><(=r,2)>)] from the term u in the literd p(xu) to the term v in the literal = p(v,y). The cross
connections in C have disappeared in E. We have that both clauses C and D are generaizations under
implication of the clause E.

Definition 17. A clause D isan n' power of aclause C if and only if D isavariant of aclausein L"({C}) (n>1),
where L"({ C}) isthe n" linear resolution of {C}. We also say that C isan n™ root of D.

Definition 18. A clause D is an indirect n'™ power of aclause C if and only if there exists a clause E such that
E < D and E isan n" power of C. We also say that Cisanindirect n'" root of D.

Example. Consider the following clauses:
C=(p(x) < p(f(x)),

D =(p() « p(f %)),

E=(p(x) « p(f3)),

F=(p(@) ~ p(f*a)). p(a)), and

G=(p(x) ~ p(@).

The clause C is a second root of D, and athird root of E. The clause C is also an indirect second root of F, since
Cis asecond root of D and D 6-subsumes F. The clause G is an indirect n" root of itself for every n > 1. The
clause G isalso anindirect first root of F.

Example. Consider the following clauses:

C=(p(¥) < p(f(x), p(a(x)),

D =(p@ ~ p(f), p(df %(2), p(f(2), p(9(2))), and
E=(p@) ~ p(f @), p(af (@), p(af(a)), p(g(a))).

The clause C isathird root of D. The clause C is aso an indirect third root of E.

The following proposition shows the relation of predicate, function, and constant symbols between two clauses
in which one clause implies the other. While it is not used directly in what follows, it does help to motivate the J-
agorithm.

Proposition 19. Let A and B be Horn clauses such that B is nonvalid and A O B. Then every predicate, function,
and constant symbol occurring in A must also occur in B.

There is no agorithm to compute indirect roots of some clauses that contain cross connections. Since we are
interested in finding them, we create the following algorithm, called the J-algorithm which finds indirect roots of
clauses, even if they contain cross connections.

CURTIN
UNIVERSITY
OF TECHNOLOGY

MAHIDOL Computational Mathematics and Modeling (CMM 2002)
UMNIVERSITY

4.2 The J-Algorithm
The J-algorithmis defined in 5 steps.
1. Input the Horn clause D.

2. Consider literas in the clause D, and create a new clause C such that C has the same positive and negative
literals as clause D, but no negative literal is repeated.

3. Change theterms in the negative literalsin C to new variables. Let C; = C,and C, = C.

4. Resolve the clause C; with C, to get aclause C". When resolving, always keep the original variablesin C;, and
introduce new variables into C, to make the variables in C, digjoint from those in C,. Also, when unifying, never
replace avariablein C; with one of the new variablesintroduced into Cs.

5. Choose one literd which occurs only as a negative literal, and let n be the number of times that literal occurs
in C", and mthe number of timesit occursin D.

If n=m, then
if we can obtain D from C” by substituting for some variables which do not occur in C,
then finish, with the output C,
else find a substitution 8 such that C’ 6 = D, replace C with C6,
let C, = C, C, = C, and go back to step 4,
elselet C, = Cand C, = C’, and go back to step 4.

Proposition 20. Let D be a Horn clause and C the Horn clause which is the output from the J-algorithm when
theinput isD. Then C is a generalization under implication of clause D and an indirect root of D.

The following example shows how the J-algorithm can find an indirect root of a clause that contains a cross
connection.

Example. Let D = (p(xy) — q(x,f(2), a(y,f(w)), p(f(2), f(w))), and note that D contains a cross connection. Let us
find an indirect root C of D using the J-algorithm.

We start with C = (p(x,y) — q(m,n), p(k,l)),and C; =C,=C.
¢ Resolve C; with C,,
C1=(p(xy) < a(mn), p(k)), and
CZ = (p(X’,y') A Q(m':n'): p(klal!))
¢ Apply {x/ky/I} to C,,
C1=(p(xy) ~ a(mn), p(kl)), and
CZ = (p(k!l) - Q(m'an')a p(k’J ’))
¢ Resolve on p(k,l), we get
Cs=(p(xy) < q(m,n), g(m’.n"), p(k.I").
¢ There are two ways to substitute for mand n that will allow Cs to match D: {mVx,n/f(2)}, or { m/y,n/f(w)}.

Casel. {m/x,n/f(2)}. Thenlet C = (p(xy) « q(x,f(2), p(kl)),and C; =C,=C.
4 Resolve C; with C,,
C1=(p(xy) ~ a(xf(@), pk,)), and
Co= (p(X.y) « a(x.f(2)). p(K.I").
¢ Apply {x/ky/I} to C,,
C1=(p(xy) ~ a(xf(2)), pk)), and
Co= (pk]) — a(kf(z)). p(K.l).
¢ Resolve on p(k,l), we get
Cs=(p(xy) < a(xf(2), akf(z)). p(k.l").
¢ Toalow C,to match D we must make the substitution { kiy} .

So, let C=(p(xy) < a(xf(2), p(y.l)),and C; =C,=C.
+ Resolve C; with C,,

/7% MAHIDOL Computational Mathematics and Modeling (CMM 2002)
¥5 UNIVERSITY

Ci=(p(xy) < a(xf(2), p(y.)), and
C2 = (p(X’ay') - q(X',f(Z')), p(y!al!))
+ Apply {x/y,y/1} to C,,
Cl = (p(X,y) e q(X,f(Z)), p(y,l)), and
Ca=(p(y.) < a.f(@)). p(l,1").
+ Resolveon p(y,l), we get
CS = (p(X,y) - q(X,f(Z)), q(y,f(Z’)), p(l 1|’))-
¢ This shows us we need to make the substitution {1/f(2)} .

Hence, letC= (p(X,y) e Q(le(z))l p(y, f(Z))), and C1 = CZ =C.
+ Resolve C; with C,,
C1 = (p(xy) < d(xf(2)), p(y. f(2))), and
CZ = (p(x’sy') e q(X',f(Z')), p(y’a f(Z’)))
+ Apply {x7y,y/f(2)} to C,,
C1 = (p(xy) — d(xf(2)), p(y. f(2))), and
C2 = (p(y,f(Z)) - q(y,f(Z')), p(,f(Z), f(Z')))
¢ Resolve on p(y, f(2)), we get
CS = (p(X,y) e q(X,f(Z)), q(y,f(Z’)), p(,f(Z), f(Z)))

CURTIN
UNIVERSITY
== OF TECHNOLOGY

g

¢ The subgtitution {Z/w} makes Cs match D. But Z is not a variable in C, so in this case we are finished, with C

= (p(xy) a(xf(2), p(y.f(2))).

Casell. {m/y,n/f(w)}. Thenlet C = (p(x,y) — q(y,f(w)), p(k,)),and C; =C,=C.
¢ Resolve C; with C,,
Ci=(p(xy) < a(y.f(w)), p(k)), and
Co=(p(x.y) < aly.f(w)), p(K.I").
¢ Apply {x/ky/1} to C,,
Ci=(p(xy) < a(y.f(w)), p(k)), and
Co=(p(kl) « q(l,f(w"), p(k'l").
¢ Resolveon p(k,l), we get
Cs=(p(xy) < a(y.f(w)), a(l,f(w)), p(k’.I1).
¢ This shows we need to make the substitution {1/x} .

SO, letC= (p(X,y) A q(y,f(W)), p(k,X)), and Cl = CZ =C.
¢ Resolve C; with C,,
Ci=(p(xy) « a(y.f(w)), p(kx)), and
Co=(p(x.y) < aly.f(w)), p(k.x)).
¢ Apply {xX/ky'/x} to C,,
Ci=(p(xy) < a(y.f(w)), p(kx)), and
Co = (p(kx) — a(x.f(2)). p(k’K)).
¢ Resolve on p(k,x), we get
Cs=(p(xy) < ay.f(w)), axf(2)). p(k'K)).
+ Now we need the substitution { k/f(w)} .

Hence, let C = (p(xy) — d(y.f(w)), p(f(w)X)), and C, = C, = C.
4 Resolve C; with C,,
Ci=(p(xy) < aly.f(w)), p(f(w),x)), and
CZ = (p(X’ay') A q(y’,f(W')), p(f(VV’),X'))
¢ Apply {x/f(w),y'/x} to C,,
Ci=(p(xy) < aly.f(w)), p(f(w),x)), and
Cz = (p(f(w),X) — a(xf(w)), p(f(w).f(w))).
¢ Resolve on p(f(w),x), we get
Cs=(p(xy) < a(y.f(w)), a(xf(w). p(f(w).f(w))).

+ Now the substitution {w'/z} makes C; equal D. Again, W' does not appear in C, so we are finished, with C =

(p(xy) < aly.f(w)), p(f(w).x)) thistime.

Conseguently, from D = (p(xy) < q(xf(2), qly,f(w)), p(f(2),f(w))), we get two indirect roots from the J-

agorithm,

CURTIN
— — UNIVERSITY
=T 0F TECHNOLOGY

' MAHIDOL Computational Mathematics and Modeling (CMM 2002)
s UNIVERSITY

C1=(p(xy) < a(xf(2), p(y,f(2))), and
Co = (p(xy) < q(y;f(w)), p(f(w),x)).
Note that C; and C, themselves contain cross connections.

5. Concluding Remarks

We have presented an agorithm, the J-algorithm, for computing indirect roots of Horn clauses. With the J-
algorithm we can compute roots of some clauses whose roots could not be computed before, because they
contained cross connections. However, it is not clear that the J-algorithm can find indirect roots of all clauses. As
aresult, further study is required, which may lead to an enhanced algorithm.

Refer ences

[1] Bratko, 1., Prolog Programming for Artificial Intelligence, Addison Wesley, 1990.

[2] Idestam-Almquist, P., Generalization of Clause, PhD thesis, Stockholm University and the Royal Institute of
Technology, Sweden, 1993.

[3] Idestam-Almquist, P., “Generalization under Implication by Recursive Anti-unification”, International
Conference on Machine Learning, Vol. 10, 1993. pp.151-158

[4] Le, T. V., Techniques of Prolog Programming, John Wiley and Sons Inc., 1993.

[5] Lloyd, J. W. , Foundations of Logic Programming, Springer-Verlag, 1984.

[6] Muggleton, S., “Inverting Implication”, Artificial Intelligence Journal, 1993.

[7] Nienhuys-Cheng, S.-H. and de Wolf, R. M., “The Subsumption Theorem in Inductive Logic Programming :
Facts and Fallacies’, Workshop on Inductive Logic Programming (ILP 95), Germany, 1995.

[8] Plotkin, G. D., Automatic Methods of Inductive Inference, PhD thesis, Edinburgh University, UK, 1971.

[9] Robinson, J. A., “A Machine-oriented Logic based on the Resolution Principle”’, Journal of ACM, Val. 12,
No. 1, 1965. pp.23-41

[10] Surapholchai, C., Generalization of Certain Types of Clauses of the First-order Predicate Logic, Master's

Thesis, Chulalongkorn University, Thailand, 1996.

