
 Computational Mathematics and Modeling (CMM 2002)

� ��

Generalization of Clauses Containing Cross Connections

Chotiros Surapholchai 1, Boonserm Kijsirikul 2, Mark E. Hall 3

1Institute of Computer Science, University of Heidelberg, Heidelberg, Germany
Chotiros.Surapholchai@Informatik.Uni-Heidelberg.De

2Department of Computer Engineering, Chulalongkorn University, Bangkok,Thailand
Boonserm.K@chula.ac.th

3Department of Mathematics and Computer Science, Hastings College,NE, USA
mhall@hastings.edu

ABSTRACT

In the area of inductive learning, generalization is the main operation, and the usual definition
of induction is based on logical implication. Plotkin's well-known technique for computing least
general generalizations of clauses under θ-subsumption sometimes produces results which are
too general with respect to implication. Muggleton has shown that this problem only occurs in
one type of generalization of recursive clauses, called an indirect root. Idestam-Almquist
presented a technique, called recursive anti-unification, to compute indirect roots of clauses.
However there exist cases for which recursive anti-unification does not work, for example, the
clauses which contain a structure called a cross connection.

In this paper, we develop a technique for computing indirect roots of Horn clauses. We first
introduce a relation equivalent to the implication, called θ-proof, which is syntactically defined,
using resolution and θ-subsumption. This leads to an algorithm, the J-algorithm, for computing
indirect roots of clauses. The roots of clauses containing cross connections can be computed by
the J-algorithm. We also prove that the output from the algorithm is a generalization under
implication of the input.

KEYWORDS – Generalization, θ-subsumption, Implication, θ-proof, J-algorithm, Indirect root,
Cross connection

1. Introduction

In the area of inductive learning, generalization is the main operation, and the usual definition of induction is
based on logical implication. Least general generalizations are of special interest since they are known to be
correct whenever there exist correct generalizations. In recent years there has been a rising interest in clausal
representation of knowledge in machine learning. Plotkin [8] has already described a technique for computation
of least general generalizations of clauses under θ-subsumption. Unfortunately, the results obtained by this
technique are sometimes too general with respect to implication.

The difference between θ-subsumption and logical implication is important since almost all inductive learners
that use clausal representations perform generalization under θ-subsumption rather than generalization under
implication. The main reason is that there is a well known and reasonably efficient technique to compute least
general generalizations under θ-subsumption, but not under implication.

Plotkin himself realized that generalization under θ-subsumption was incomplete for a certain type of clause
known as a recursive clause. Recursion is an important program structure in logic programming. The ability to
learn recursive clauses is therefore crucial when using a clausal representation. In [6] it is shown that the
incompleteness of generalization under θ-subsumption only concerns one type of generalization of recursive
clauses, which is often called an indirect root.

 Computational Mathematics and Modeling (CMM 2002)

� ��

Idestam-Almquist [2] described the well known technique to compute least general generalizations under θ-
subsumption and the most important theoretical results connected with it. He studied the theory of generalization
under implication, and noted that implication between clauses is undecidable. He therefore introduced a stronger
form of implication, called T-implication, which is decidable between clauses. He showed that for every finite
set of clauses there exists a least general generalization under T-implication. Finally, he presented a technique,
called recursive anti-unification, to compute indirect roots of clauses. Recursive anti-unification is a
generalization of anti-unification, which is the usual technique for computing least general generalizations under
θ-subsumption.

However, there exist cases for which recursive anti-unification does not work, cases where at least one of the
clauses contains a structure called a cross connection. We will describe a technique, called the J-algorithm, to
compute indirect roots of clauses. By this technique we can even compute roots of clauses containing cross
connections, which are guaranteed to be generalizations under implication.

In this work we will only consider Horn clauses. In Section 2 background on generalization under θ-
subsumption of clauses is given, and in Section 3 generalization under implication and θ-proof are discussed. In
Section 4 we describe the cross connection and give our technique, the J-algorithm, for computing indirect roots
of clauses containing the cross connection. Finally, concluding remarks are given in Section 5.

2. Generalization under θ-subsumption

In this section we will describe the framework for generalization of clauses developed by Plotkin. This
framework is based on a generality relation as θ-subsumption.

Definition 1. Let C and D be clauses. Then C θ-subsumes D, denoted by C % D, if and only if there exists a
substitution θ such that Cθ ⊆ D. We also say that C is a generalization under θ-subsumption of D.

Proposition 2. θ-subsumption is reflexive and transitive.

Example. Consider the following clauses:
C = (← p(f(y)), p(x)),
D = (q(y) ← p(f(y))), and
E = (q(a) ← p(f(a)), r(b)).

We have C % C since every clause is a subset of itself. We also have C % D since Cθ ⊆ D where θ = {x/f(y)},
and D % E since Dσ ⊆ E, where σ = {y/a}. Then C % E, since Cθσ ⊆ E.

Two clauses may θ-subsume each other without being variants. In other words, θ-subsumption is not anti-
symmetric.

Definition 3. Let C and D be clauses. Then C and D are equivalent under θ-subsumption, denoted C ∼ D, if
and only if C % D and D % C.

Example. Consider the following clauses:
C = (p(a) ← q(a), q(x)),
D = (p(a), p(y) ← q(a)), and
E = (p(a) ← q(a)).

Then we have C ∼ D since C{x/a} ⊆ D and D{y/a} ⊆ C. We also have C ∼ E and D ∼ E. Hence, all three clauses
are equivalent under θ-subsumption. Note that no two of these clauses are variants.

We are particularly interested in least general generalizations. As already mentioned in Section 1, least general
generalization under θ-subsumption is the most commonly used form of generalization of clauses.

Definition 4. A clause C is a generalization under θ-subsumption of a set of clauses S = {D1,D2,...,Dn} if and
only if C % Di for every 1 ≤ i ≤ n. A generalization under θ-subsumption C of S is a least general generalization
under θ-subsumption (LGGθ) of S if and only if C′ % C for every generalization under θ-subsumption C′of S.

 Computational Mathematics and Modeling (CMM 2002)

� ��

Example. Consider the following clauses:
C = (p(b) ← q(b)),
D = (p(a) ← q(a), q(b)),
E = (p(x) ← q(x), q(b)), and
F = (p(x) ← q(x), q(b), q(z)).

Both clauses E and F are LGGθs of {C,D}.

In general, an LGGθ is not unique, as shown by the example above. Plotkin showed that there exists an LGGθ of
every finite set of clauses, a result which is not obvious.

3. Generalization under Implication and θ-proof

In this section we will study the theory of generalization under implication. We note that implication is difficult
to work with, and therefore we will introduce a relation equivalent to implication, call θ-proof.

3.1 Implication

Implication is the most natural and straightforward basis for generalization, since the concept of inductive
conclusion is defined in terms of logical consequence.

Definition 5. Let C and D be clauses. Then C implies D, denoted C ⇒ D, if and only if every model for C is also
a model for D (i.e., {C} = D). We also say that C is a generalization under implication of D.

Example. Consider the following clauses:
C = (p(x) ← p(f(x))),
D = (p(x) ← p(f 2(x))),
E = (p(x) ← p(f 2(y))), and
F = (p(x) ← p(f 3(x))).

Then we have that both C and E imply both D and F, but C does not θ-subsume D, and neither C implies E nor E
implies C.

Proposition 6. Let C1,C2,...,Ck,D1,D2,...,Dn, and E be clauses. If {C1,C2,...,Ck} = Dj for all j ∈ {1,2,...,n} and
{D1,D2,...,Dn} = E, then {C1,C2,...,Ck} = E.

Proposition 7. Implication is reflexive and transitive.

As in the case of θ-subsumption, implication between clauses is not anti-symmetric. Also, two clauses may be
equivalent under implication without being equivalent under θ-subsumption.

Definition 8. Let C and D be clauses. Then C and D are equivalent under implication, denoted C ⇔ D, if and
only if C ⇒ D and D ⇒ C.

Example. Consider the following clauses:
C = (p(x), p(y) ← p(f(x)), p(f 2(y))), and
D = (p(z) ← p(f 2(z))).

Then we have C ⇔ D. We also have that D θ-subsumes C, but C does not θ-subsume D.

The above example also shows that if a clause C implies a clause D then C does not necessary θ-subsume D. It is
well known that implication is a strictly weaker relation between clauses than θ-subsumption.

Proposition 9. Let C and D be clauses. If C % D, then C ⇒ D.

Since there is no least general generalization of Horn clauses under implication, we instead turn our interest to
minimally general generalizations under implication in the next definition.

 Computational Mathematics and Modeling (CMM 2002)

� ��

Definition 10. A Horn clause C is a minimally general generalization under implication (MinGGI) of two
Horn clauses D and E if and only if:
a) C ⇒ D and C ⇒ E, and
b) for each Horn clause F such that F ⇒ D, F ⇒ E and C ⇒ F, we also have F ⇒ C.

Example. Consider the following clauses:
C = (p(a) ← p(f(a))),
D = (p(b) ← p(f 2(b))),
E = (p(x) ← p(f(y))), and
F = (p(z) ← p(f(z))).

The clause E is an LGGθ of {C,D}, and F is an MinGGI of {C,D}. The MinGGI is strictly more specific than
the LGGθ, since E implies F, but F does not imply E.

Example. Consider the following clauses:
C = (p(x) ← p(f(x))),
D = (p(x) ← p(f 2(x))),
E = (p(x) ← p(f 2(y))), and
F = (p(x) ← p(f 3(x))).

The both clause C and clause E are MinGGI’s of D and F.

3.2 θ-proof

Definition 11. Let H be a set of clauses and B a clause. We say that H θ-proves B if and only if there is a
sequence A0,A1,A2,...,An of clauses such that each Ai is either an element of H, or follows from Aj and Ak by
resolution for some j,k < i , and in addition An θ-subsumes B. We will write H −θ B if and only if H θ-proves B.
If H = {A}, we often write A −θ B, and say A θ-proves B.

The following lemma is used to make it easier to prove the next theorem.

Lemma 12. Let H be a set of clauses, and let c1,c2,...,cm be constant symbols which do not appear in any of the
clauses of H. Suppose we have a sequence B1,B2,...,Bn of clauses such that for each i either Bi ∈ H or there exist j,
l < i such that Bi follows from Bj and Bl by resolution.
Let y1,y2,...,ym be variables which do not occur in any of the clauses B1,B2,...,Bn. For each i, construct B′i by
replacing all occurrences of cj with yj, for j = 1,2,...,m. Then for each i either B′i ∈ H or there exist j, l < i such
that B′i follows from B′j and B′l by resolution.

The following theorem shows that implication and θ-proof are equivalent.

Theorem 13. Let H be a finite set of clauses and C a clause which is not valid. Then H = C if and only if H −θ C.
Proof. The proof is given in [10].

The previous theorem is similar to Theorem 4 in the paper by Nienhuys-Cheng and de Wolf [7], but the proof is
different. Our proof in [10] has the advantage that in some ways it is more direct, and is done all in one case,
whereas the proof in [7] uses three cases, two concerning ground clauses, and then the general case.

Collorary 14. Let C1,C2,...,Ck,D1,D2,...,Dn and E be clauses. If {C1,C2,...,Ck} −θ Dj for all j ∈ {1,2,...,n} and
{D1,D2,...,Dn} −θ E, then {C1,C2,...,Ck} −θ E.

Collorary 15. θ-proof is reflexive and transitive

4. Cross Connection and the J-Algorithm

Idestam-Almquist’s technique to compute expansions can reduce most indirect roots (see the definition below) to
generalizations under θ-subsumption, but it only works when there are structural regularities called internal
and/or external connections in the given clauses [2]. Such structural regularities tell how appropriate linear

 Computational Mathematics and Modeling (CMM 2002)

� ��

expansions can be computed. However, there are proper linear indirect roots of clauses for which it is not
possible to find any appropriate linear expansions by his technique. Such linear indirect roots have a kind of
structure he called cross connections.

4.1 Cross Connection

Definition 16. Let (A,¬ B) be an ambivalent pair of literals in a clause C, s a term in position p in A and t a term
in position q in B. Then a sequence of terms K = [s0,s1,...,sn] is a cross connection with structure π from s to t if
and only if:
a) s0 = s and sn = t,
b) p is not a subposition of q nor is q a subposition of p, and
c) π = [(p1,q1),(p2,q2),...,(pn,qn)] is a sequence of pairs of positions such that for each 0 ≤ i ≤ (n-1) there is a literal
Li ∈ C such that si is found in position pi+1 in Li and si+1 is found in position qi+1 in Li.

Example. Consider the following clauses:
C = (p(x,u) ← q(x,y), r(u,v), p(v,y)),
D = (p(x,u) ← q(v,w), r(y,z), p(k,l)), and
E = (p(x,u) ← q(x,y), r(y,z), r(u,v), q(v,w), p(z,w)).

In the clause C there is a cross connection K1 = [x,y] with structure π1 = [(<(¬ q,1)>,<(¬ q,2)>)] from the term x
in the literal p(x,u) to the term y in the literal ¬ p(v,y), and a cross connection K2 = [u,v] with structure π2 =
[(<(¬ r,1)>,<(¬ r,2)>)] from the term u in the literal p(x,u) to the term v in the literal ¬ p(v,y). The cross
connections in C have disappeared in E. We have that both clauses C and D are generalizations under
implication of the clause E.

Definition 17. A clause D is an nth power of a clause C if and only if D is a variant of a clause in Ln({C}) (n ≥1),
where Ln({C}) is the nth linear resolution of {C}. We also say that C is an nth root of D.

Definition 18. A clause D is an indirect nth power of a clause C if and only if there exists a clause E such that
E % D and E is an nth power of C. We also say that C is an indirect nth root of D.

Example. Consider the following clauses:
C = (p(x) ← p(f(x))),
D = (p(x) ← p(f 2(x))),
E = (p(x) ← p(f 3(x))),
F = (p(a) ← p(f 2(a)), p(a)), and
G =(p(x) ← p(a)).

The clause C is a second root of D, and a third root of E. The clause C is also an indirect second root of F, since
C is a second root of D and D θ-subsumes F. The clause G is an indirect nth root of itself for every n ≥ 1. The
clause G is also an indirect first root of F.

Example. Consider the following clauses:
C = (p(x) ← p(f(x)), p(g(x))),
D = (p(z) ← p(f 3(z)), p(gf 2(z)), p(gf(z)), p(g(z))), and
E = (p(a) ← p(f 3(a)), p(gf 2(a)), p(gf(a)), p(g(a))).

The clause C is a third root of D. The clause C is also an indirect third root of E.

The following proposition shows the relation of predicate, function, and constant symbols between two clauses
in which one clause implies the other. While it is not used directly in what follows, it does help to motivate the J-
algorithm.

Proposition 19. Let A and B be Horn clauses such that B is nonvalid and A ⇒ B. Then every predicate, function,
and constant symbol occurring in A must also occur in B.

There is no algorithm to compute indirect roots of some clauses that contain cross connections. Since we are
interested in finding them, we create the following algorithm, called the J-algorithm which finds indirect roots of
clauses, even if they contain cross connections.

 Computational Mathematics and Modeling (CMM 2002)

� ��

4.2 The J-Algorithm

The J-algorithm is defined in 5 steps.

1. Input the Horn clause D.

2. Consider literals in the clause D, and create a new clause C such that C has the same positive and negative
literals as clause D, but no negative literal is repeated.

3. Change the terms in the negative literals in C to new variables. Let C1 = C, and C2 = C.

4. Resolve the clause C1 with C2 to get a clause C*. When resolving, always keep the original variables in C1, and
introduce new variables into C2 to make the variables in C2 disjoint from those in C1. Also, when unifying, never
replace a variable in C1 with one of the new variables introduced into C2.

5. Choose one literal which occurs only as a negative literal, and let n be the number of times that literal occurs
in C*, and m the number of times it occurs in D.

If n = m, then
 if we can obtain D from C* by substituting for some variables which do not occur in C,
 then finish, with the output C,
 else find a substitution θ such that C*θ = D, replace C with Cθ,
 let C1 = C, C2 = C, and go back to step 4,
else let C1 = C and C2 = C*, and go back to step 4.

Proposition 20. Let D be a Horn clause and C the Horn clause which is the output from the J-algorithm when
the input is D. Then C is a generalization under implication of clause D and an indirect root of D.

The following example shows how the J-algorithm can find an indirect root of a clause that contains a cross
connection.

Example. Let D = (p(x,y) ← q(x,f(z)), q(y,f(w)), p(f(z), f(w))), and note that D contains a cross connection. Let us
find an indirect root C of D using the J-algorithm.

We start with C = (p(x,y) ← q(m,n), p(k,l)), and C1 = C2 = C.
♦ Resolve C1 with C2,

C1 = (p(x,y) ← q(m,n), p(k,l)), and
C2 = (p(x��y�� ← q(m��n��� p(k��l����

♦ Apply {x��k,y��l} to C2,
C1 = (p(x,y) ← q(m,n), p(k,l)), and
C2 = (p(k,l) ← q(m��n��� p(k��l����

♦ Resolve on p(k,l), we get
Cs = (p(x,y) ← q(m,n), q(m��n��� p(k��l����

♦ There are two ways to substitute for m and n that will allow Cs to match D: {m/x,n/f(z)}, or {m/y,n/f(w)}.

Case I. {m/x,n/f(z)}. Then let C = (p(x,y) ← q(x,f(z)), p(k,l)), and C1 = C2 = C.
♦ Resolve C1 with C2,

C1 = (p(x,y) ← q(x,f(z)), p(k,l)), and
C2 = (p(x��y�� ← q(x��f(z���� p(k��l����

♦ Apply {x��k,y��l} to C2,
C1 = (p(x,y) ← q(x,f(z)), p(k,l)), and
C2 = (p(k,l) ← q(k,f(z���� p(k��l����

♦ Resolve on p(k,l), we get
Cs = (p(x,y) ← q(x,f(z)), q(k,f(z���� p(k��l����

♦ To allow Cs to match D we must make the substitution {k/y}.

So, let C = (p(x,y) ← q(x,f(z)), p(y,l)), and C1 = C2 = C.
♦ Resolve C1 with C2,

 Computational Mathematics and Modeling (CMM 2002)

� ��

C1 = (p(x,y) ← q(x,f(z)), p(y,l)), and
C2 = (p(x��y�� ← q(x��f(z���� p(y��l����

♦ Apply {x��y,y��l} to C2,
C1 = (p(x,y) ← q(x,f(z)), p(y,l)), and
C2 = (p(y,l) ← q(y,f(z���� p(l, l����

♦ Resolve on p(y,l), we get
Cs = (p(x,y) ← q(x,f(z)), q(y,f(z���� p(l,l����

♦ This shows us we need to make the substitution {l/f(z)}.

Hence, let C = (p(x,y) ← q(x,f(z)), p(y, f(z))), and C1 = C2 = C.
♦ Resolve C1 with C2,

C1 = (p(x,y) ← q(x,f(z)), p(y, f(z))), and
C2 = (p(x��y�� ← q(x��f(z���� p(y�� f(z�����

♦ Apply {x��y,y��f(z)} to C2,
C1 = (p(x,y) ← q(x,f(z)), p(y, f(z))), and
C2 = (p(y,f(z)) ← q(y,f(z���� p(,f(z), f(z�����

♦ Resolve on p(y, f(z)), we get
Cs = (p(x,y) ← q(x,f(z)), q(y,f(z���� p(,f(z), f(z�����

♦ The substitution {z��w} makes Cs match D. But z� LV QRW D YDULDEOH LQ C, so in this case we are finished, with C
= (p(x,y) ← q(x,f(z)), p(y,f(z))).

Case II. {m/y,n/f(w)}. Then let C = (p(x,y) ← q(y,f(w)), p(k,l)), and C1 = C2 = C.
♦ Resolve C1 with C2,

C1 = (p(x,y) ← q(y,f(w)), p(k,l)), and
C2 = (p(x��y�� ← q(y��f(w���� p(k��l����

♦ Apply {x��k,y��l} to C2,
C1 = (p(x,y) ← q(y,f(w)), p(k,l)), and
C2 = (p(k,l) ← q(l,f(w���� p(k��l����

♦ Resolve on p(k,l), we get
Cs = (p(x,y) ← q(y,f(w)), q(l,f(w���� p(k��l����

♦ This shows we need to make the substitution {l/x}.

So, let C = (p(x,y) ← q(y,f(w)), p(k,x)), and C1 = C2 = C.
♦ Resolve C1 with C2,

C1 = (p(x,y) ← q(y,f(w)), p(k,x)), and
C2 = (p(x��y�� ← q(y��f(w���� p(k��x����

♦ Apply {x��k,y��x} to C2,
C1 = (p(x,y) ← q(y,f(w)), p(k,x)), and
C2 = (p(k,x) ← q(x,f(z���� p(k��k)).

♦ Resolve on p(k,x), we get
Cs = (p(x,y) ← q(y,f(w)), q(x,f(z���� p(k��k)).

♦ Now we need the substitution {k/f(w)}.

Hence, let C = (p(x,y) ← q(y,f(w)), p(f(w),x)), and C1 = C2 = C.
♦ Resolve C1 with C2,

C1 = (p(x,y) ← q(y,f(w)), p(f(w),x)), and
C2 = (p(x��y�� ← q(y��f(w���� p(f(w���x����

♦ Apply {x��f(w),y��x} to C2,
C1 = (p(x,y) ← q(y,f(w)), p(f(w),x)), and
C2 = (p(f(w),x) ← q(x,f(w���� p(f(w���f(w))).

♦ Resolve on p(f(w),x), we get
Cs = (p(x,y) ← q(y,f(w)), q(x,f(w���� p(f(w���f(w))).

♦ Now the substitution {w��z} makes Cs equal D. Again, w� GRHV QRW DSSHDU LQ C, so we are finished, with C =
(p(x,y) ← q(y,f(w)), p(f(w),x)) this time.

Consequently, from D = (p(x,y) ← q(x,f(z)), q(y,f(w)), p(f(z),f(w))), we get two indirect roots from the J-
algorithm,

 Computational Mathematics and Modeling (CMM 2002)

� 	�

 C1 = (p(x,y) ← q(x,f(z)), p(y,f(z))), and
 C2 = (p(x,y) ← q(y,f(w)), p(f(w),x)).
Note that C1 and C2 themselves contain cross connections.

5. Concluding Remarks

We have presented an algorithm, the J-algorithm, for computing indirect roots of Horn clauses. With the J-
algorithm we can compute roots of some clauses whose roots could not be computed before, because they
contained cross connections. However, it is not clear that the J-algorithm can find indirect roots of all clauses. As
a result, further study is required, which may lead to an enhanced algorithm.

References

[1] Bratko, I., Prolog Programming for Artificial Intelligence, Addison Wesley, 1990.
[2] Idestam-Almquist, P., Generalization of Clause, PhD thesis, Stockholm University and the Royal Institute of

Technology, Sweden, 1993.
[3] Idestam-Almquist, P., “Generalization under Implication by Recursive Anti-unification”, International

Conference on Machine Learning, Vol. 10, 1993. pp.151-158
[4] Le, T. V. , Techniques of Prolog Programming, John Wiley and Sons Inc., 1993.
[5] Lloyd, J. W. , Foundations of Logic Programming, Springer-Verlag, 1984.
[6] Muggleton, S., “Inverting Implication”, Artificial Intelligence Journal, 1993.
[7] Nienhuys-Cheng, S.-H. and de Wolf, R. M., “The Subsumption Theorem in Inductive Logic Programming :

Facts and Fallacies”, Workshop on Inductive Logic Programming (ILP 95), Germany, 1995.
[8] Plotkin, G. D., Automatic Methods of Inductive Inference, PhD thesis, Edinburgh University, UK, 1971.
[9] Robinson, J. A., “A Machine-oriented Logic based on the Resolution Principle”, Journal of ACM, Vol. 12,

No. 1, 1965. pp.23-41
[10] Surapholchai, C., Generalization of Certain Types of Clauses of the First-order Predicate Logic, Master’s

Thesis, Chulalongkorn University, Thailand, 1996.

