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ABSTRACT

This paper presents an application of Fuzzy Logic(FL)
and Genetic Algorithm(GA) for improving the
approximate match of first-order Inductive Logic
Programming(ILP) rules that is based on Backpropagation
Neural Networks(BNN). With the help of FL, the
evaluation of the truth values of logic programs is more
problem-sophisticated, before these values are sent to the
BNN for learning or for recognising. We employ GA to
find the best fuzzy sets. Experimental results on a Thai-
OCR domain show that the our method gives the best
recognition accuracy of 85.95% compared to 82.31%
recognition accuracy of the previous method.

1. INTRODUCTION

For the last ten years, many techniques have been
developed to improve classification accuracy of Thai-
Optical Character Recognition (Thai-OCR) which is not
reasonably high enough, according to the complexity
nature of Thai characters plus the high similarity between

some characters, e.g., the characters ฎ, ฏ, ท or ฑ.

Supanwansa has proposed an interesting method that
employed Inductive Logic Programming (ILP) which is a
kind of Machine Learning technique to generate a rule set
for recognising characters[4]. ILP uses application-
specific background knowledge, positive instances and
negative instances, and outputs the rule set for
characterising the concept of the positive instances.
However, for some noisy or unseen character instance,
there can be no rule that exactly characterises the
character. In this case, we say that this character is ILP-
unrecognisable. Kijsirikul et al. solved this ILP-
unrecognisable problem by sending the binary truth
values of literals of the rule set to a BNN [2]. After the

BNN is applied, every character is recognisable, and thus,
the more correctly recognised characters are obtained.

There is some disadvantage we observed in the line
of the above work, i.e., the truth values used in this work
are evaluated using classical binary logic. These values
are sharp possibility values of either 0 or 1. The value 1 is
used when a given character exactly has some property;
otherwise, the value 0 is used, which is unsuitable. We
believe that the more suitable truth values should increase
the classification accuracy of the BNN. This paper will
examine this hypothesis.

The rest of this paper is organised as follows. Section
2 gives an overview of ILP&BNN methods. Section 3
briefly discusses the concept of FL. Section 4 gives the
concept of GA. Section 5 describes the experiments. The
conclusion of this paper will be given in Section 6.

2. TRADITIONAL METHOD

This section gives an overview of the traditional method
of combining ILP with BNN.

Training the BNN  For convenience, suppose that

there are only three Thai characters, i.e., 'Kai'('ก'), 'Khai'('

ข') and 'Tahan'('ท'). After ILP is applied, we obtain a rule

set that is used to recognise future characters. Figure 1
shows an example of a rule set generated by ILP.

There are three rules in this rule set, each of which
defines the concept of character 'Kai', 'Khai' or 'Tahan',
respectively. The predicates HeadZone(I, 3) and
HeadPrimitive(I, 1) are characteristics of character
'Kai'. HeadZone(I, 3) characterises that the head zone
of character 'Kai' must be of type 3 (at the bottom left).
HeadPrimitive(I, 1) characterises that the head of
character 'Kai' must be of type 1 (in octant 2). Such
predicates are called background knowledge that must be
provided to the ILP. The details of background knowledge
are described in [4].



Kai(I):- HeadZone(I, 3),
HeadPrimitive(I, 1).

Khai(I):- HeadZone(I, 2),
HeadPrimitive(I, 10),
EndPointZone(I, 4),
CountEndPoints(I, 2).

Tahan(I):- not TopRightTail(I),
HeadZone(I, 2),
HeadPrimitive(I, 12),
EndPointPrimitive(I, 5),
CountEndPoints(I, 3).

Figure 1: An example of a rule set.

A character X is represented by the information IX,
e.g., IX = ( 3, 0.78, [78, 82, 83], [], [], [1] ). X will be
recognised as 'Kai' if when all occurrences of I in the rule
set are substituted with IX, the truth values of all literals in
rule 'Kai' are 1. Logically, a given character Y which is
represented by IY, will not be recognised as 'Khai' if when
all occurrences of I in the rule set are substituted with IY,
the truth value of some literal in rule Khai is 0.

In order to train the BNN to learn a character of font
'Kai', e.g., TrainKai. Firstly, we substitute all occurrences
of I in the rule set with ITrainKai and then evaluate the truth
value of every literal in the rule set. Suppose such the
truth values are shown on the right hand side of each
literal in Figure 2 below.

HeadZone(ITrainKai, 3) → 1
HeadPrimitive(ITrainKai, 1) → 1

HeadZone(ITrainKai, 2) → 0
HeadPrimitive(ITrainKai, 10) → 0
EndPointZone(ITrainKai, 4) → 1
CountEndPoints(ITrainKai, 2) → 0

not TopRightTail(ITrainKai) → 1
HeadZone(ITrainKai, 2) → 0
HeadPrimitive(ITrainKai, 12) → 0
EndPointPrimitive(ITrainKai, 5) → 0
CountEndPoints(ITrainKai, 3) → 0

Figure 2: The truth values of all literals when ITrainKai is
substituted into the rule set.

We send the vector [1 1 0 0 1 0 1 0 0 0 0]T

for training the BNN for TrainKai (Figure 3). We repeat
this step for all training characters. The links of the BNN
are fully connected from the hidden layer to the output
layer. The number of nodes in the hidden layer equals to
the number of rules, which is three. All input nodes
corresponding to predicates in the same rule are connected
to one hidden node that represents that rule.

Recognising characters  For a given noisy ILP-
unrecognisable character of font 'Khai', e.g., NoisyKhai
which is represented by INoisyKhai, as shown in Figure 4.
Analogous to the previous example, we send the vector

[1 0 0 1 0 0 1 1 0 0 0]T to the BNN. In this case,
the prediction from the BNN (the best matching character
to NoisyKhai) is 'Khai', which is correct.
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Figure 3: Training the BNN with TrainKai.

HeadZone(INoisyKhai, 3) → 1
HeadPrimitive(INoisyKhai, 1) → 0

HeadZone(INoisyKhai, 2) → 0
HeadPrimitive(INoisyKhai, 10) → 1
EndPointZone(INoisyKhai, 4) → 0
CountEndPoints(INoisyKhai, 2) → 0

not TopRightTail(INoisyKhai) → 1
HeadZone(INoisyKhai, 2) → 1
HeadPrimitive(INoisyKhai, 12) → 0
EndPointPrimitive(INoisyKhai, 5) → 0
CountEndPoints(INoisyKhai, 3) → 0

Figure 4: NoisyKhai is not ILP-recognisable.

However, there is some weakpoint of this method as
mentioned earlier. Let us consider the predicate
CountEndPoints(I, 3) which counts the number of
the end points in the image of the character. The truth
value of this predicate will be set to the value 1 if I
contains exactly three end points; otherwise, it will be set
to the value 0. Suppose I contains two end points, so the
truth value 0 is assigned, which is not suitable. We believe
that the more suitable truth values being sent to the BNN
should increase the recognition accuracy. This is the
hypothesis of our method. Here we employ FL to find
such the values, which will be introduced in the next
section.

3. FUZZY LOGIC

Classical logic, which is sometimes not sophisticated to
many real-world problems, e.g., the problem of counting
something we just mentioned above. Fuzzy Logic  (FL), is
a logic system for reasoning that are approximate rather
than exact. The fundamental unit of FL is the Fuzzy Set
(FS). FS and FL are developed by Zadeh [5, 6].

Fuzzy set Definition Given the universal set X, in
order to define a fuzzy set A on X, we define a
membership function A : X → [0, 1] that maps elements x
of X into real numbers in [0, 1]. A(x) is interpreted as the



degree to which x belongs to the fuzzy set A. We
sometimes write fuzzy set A as {(x, A(x))| x ∈ X}.           

The following are some fuzzy sets used in our
experiments.

(i)  Many predicates in our background knowledge
are used for counting some objects. We then naturally
construct the fuzzy set near-x0 = { (x, near-x0(x) =

2
0 )(1

1

xxk −+
) | x ∈ ℜ } to characterises the degree to

which an element x ∈ ℜ is belong to the real number x0.
The shape of the fuzzy set is controlled by k∈ℜ+. The
predicates use this fuzzy set with their own k. Note that
when k→∞, this fuzzy set becomes crisp and this is
allowable in our experiment as in some situation, a crisp
set may be suffice.

(ii)  In our background knowledge, each character
image is composed of primitive vectors(or vectors). There
are two kinds of vectors, i.e., line vectors and circle
vectors. (see Figure 5).
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Figure 5: Primitive vectors.

The vectors of type 0 to type 7 are used to represent
lines. The vectors of type 8 to type 12 are used to
represent circles. The type-0 vectors are the lines whose
angles lie in octant 1 and so on. The type-8 vector is the
circle that does not connect to any line. The type-9 vector
is the circle that connects to a line at quadrant 1 and so on.

Next, the similarity on given two vectors are defined
in the fuzzy set VectorsRelation = {((i, j), VR(i, j)) | (i, j)∈
{0, ..., 12}2}. VR(i, j) equals 0 if  i and j are not the same
kind; otherwise, it is defined in Figure 6 (the blank cells
indicate the value 0). k1 and k2 are parameters which
should be appropriately determined by GA.

VR(i, j) 0 1 2 3 4 5 6 7
0 1 k1 k1

1 k1 1 k1

2 k1 1 k1

3 k1 1 k1

4 k1 1 k1

5 k1 1 k1

6 k1 1 k1

7 k1 k1 1

VR(i, j) 8 9 10 11 12
8 1 k2 k2 k2 k2

9 k2 1 k2 k2

10 k2 k2 1 k2

11 k2 k2 1 k2

12 k2 k2 k2 1
Figure 6: VectorsRelation(i, j).
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Figure 7: Primitive vector zones.

(iii)  Primitive vector zones (or zones) are used to
address the position of vectors. We address the position of
a vector using its starting zone and its ending zone (see
Figure 7). There are eight zones, i.e., zone 0, ... , zone 7.
Next, the similarity on zones are defined by the fuzzy set
ZoneRelation = {((i, j),  ZR(i, j)) | (i, j) ∈ {0, ..., 7}2}.
Where ZR(i, j) is defined as in Figure 8 (the blank cells
indicate the value 0).

ZR(i, j) 0 1 2 3 4 5 6 7
0 1 k3 k3 k3 k3 k3

1 k3 1 k3 k3 k3

2 k3 k3 1 k3 k3

3 k3 1 k3 k3 k3

4 k3 k3 k3 1 k3

5 k3 k3 k3 1
6 k3 k3 1
7 k3 k3 1

Figure 8: ZoneRelation(i, j).
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Figure 9: Five levels of Thai writing system.

(iv)  In Figure 9, Thai characters are written in five
levels, that are, level 1 to level 5. For example, the level

of each character in the string "ปฏิกูล" (pollution) are 2, 4,

1, 3, 5 and 3, respectively. The reason we need a fuzzy set
here is that, there are a lot of Thai characters that look

very similar but they are in different levels, e.g., ป(2) and

บ(3); ฟ(2) and พ(3). We then define a fuzzy set

LevelRelation = { ((i, j), LR(i, j)) |  (i, j) ∈ {1, 2, 3, 4, 5}2}
to express the matter of degree these levels are related as
in Figure 10.

LR(i, j) 1 2 3 4 5
1 1
2 1 k4

3 k4 1 k4

4 k4 1
5 1

Figure 10: LevelRelation(i, j).

The rest of fuzzy sets in our experiment are used to
compare two real numbers wheter they are greater, or less
than each other. After all necessary fuzzy sets are defined,



we interpret the meaning of a logic program in the
background knowledge into the first-order logic
framework, and apply FL to them.

Fuzzy logic   In FL, the truth value of a given fuzzy
proposition (substituted predicate) can have an
intermediate truth-value in [0, 1]. We symbolised the
procedure of evaluating the truth value of our background
knowledge as in function T described in Figure 11.  In
Figure 11, "A" is some concept such as high, low. A is the
fuzzy set that is used to characterise concept "A". c, i, u
and L are any fuzzy complement, fuzzy intersection, fuzzy
union and a finite set of objects, respectively. ∃ is
existentially fuzzy quantifier, ∀ is universally fuzzy
quantifier. Q is fuzzy number. A(v) is some predicate
involving variable v. A(v←x) is the proposition which is
obtained by substituting all occurrences of variable v with
x, in  A.  Φ and Γ are any fuzzy propositions. This paper
employs the standard fuzzy operations for c, i, and u. For
more detail about FS, or FL, see [3].

function T(p : fuzzy proposition) : [0, 1];
{

case p of {
"x is A": T := A(x);
"¬Φ": T := c(T(Φ));
"Φ∧Γ": T := i(T(Φ), T(Γ));
"Φ∨Γ": T := u(T(Φ), T(Γ));
"∃v∈L:A(v)": T := ( )[ ])(max xvAT

Lx
←

∈
;

"∀v∈L:A(v)": T := ( )[ ])(min xvAT
Lx

←
∈

;

"Qv∈L:A(v)": T := ( )












←∑

∈Lx

xvATQ )( ;

}
}

Figure 11: Truth value function.

There are 55 predicates in the background
knowledge. They need seven fuzzy sets parametrised by
the variables x[0], ..., x[12] to define such k1, k2, ... we
mentioned earlier. We will refer the tuple (x[0], ..., x[12])
as fuzzy configuration, FCFG.  x[0], ..., x[5] ∈ [0, 1] are
used to define matrix fuzzy sets, if x[i] = 0, all FSs
corresponding to x[i] will become crisp.  x[6], ..., x[12] ∈
[0, ∞] are used to control the shape of the near-x0's, and if
x[i] = 0, the predicate corresponding to the x[i] will also
become crisp. Therefore, the FCFG (0, ..., 0) will cause
the entire system become crisp. By some manual coarse
searching, we have found that some FCFGs can improve
the recognition accuracy of the BNN. In order to optimise
this FCFG automatically, we decide to employ GA
because the solution FCFG can be represented as a finite-
length binary string, and GA can be applied effectively.

4. GENETIC ALGORITHM

Genetic Algorithms (GA) [1] is widely known as a robust
probabilistic algorithm used for optimising an encodable
solutions. GA locates the optimal solution using a
procedure similar to those in natural selection. Each
solution is called a genome. A set of genomes is called a
population. GA evaluates each genome to measure its
fitness.   In the initial generation, GA randomly creates a
population using a random number seed. In the next
generation, GA randomly picks some genomes with
probabilities according to their fitness to generate
offsprings and modifies them by genetic operators. This
procedure is then  repeated until the  terminating condition
is satisfied, such as the maximum number of generation is
encountered.

Genetic configuration setting The genetic operators
used in this experiment are cloning, two-points crossover
and mutation. The cloning is a duplication from parent to
children. In the two-point crossover, two genomes are
picked as parents, two random points are picked to cut
each genome into three pieces, then these pieces are
swapped and recombined. The mutation is actually bit
flipping.  The fitness of a genome we used is the linear
scaling of the objective function. The objective function φ
measures the recognition accuracy returned from the BNN
as below.

function φ (g : genome) : accuracy in %;
{

• decode g into FCFG = (x[0], ..., x[12]);
• if (FCFG is invalid) then

φ :=  0%;
else {

• generate traning/test data set for the BNN
using FCFG, run the BNN;

• φ := the  accuracy returned from the BNN;
}

}
Figure 12: The objective function.

The objective function will reject any invalid genome
that produces a FCFG with some x[i∈{0, ..., 5}] > 1, and
then assigns 0% recognition accuracy for such genome.
Figure 13 shows such the genome while Figure 14 shows
the genetic configuration setting.

X[0]=3.28125e-07; X[0]=0;
X[1]=140; X[1]=0;
X[2]=0; X[2]=0;
. .
. .
X[10]=1; X[10]=1.5;
X[11]=0; X[11]=1;
X[12]=0; X[12]=781250;
[ ac = 0 ] [ ac =  71.30 ]

Figure 13: Invalid(left) and valid(right) FCFG genome with its
recognition accuracy.



Number of Genomes 64
Length of the String 156
Replacement Percentage 50%
Crossover Percentage 100%
Crossover Method Two-point
Mutation Percentage 10%
Max. Number of Generations 256
Random number seed 191

Figure 14: Genetic configuration setting.

Encoding scheme We design each 12-bits floating
point x[i] as mantissa[i] × 10exponent[i], i ∈{0, ..., 12}.
Therefore the total length of the encoded string is 13×12 =
156 bits. Figure 15 shows the encoding scheme.

x[0].b[0] ... x[0].b[11] ... ... x[12].b[11]
Figure 15: Encoding scheme.

We decode mantissa[i] as  b[6] × ( {1 + b[0] × 1 + b
[1] × 2 +  ... + b[5] × 32} / 64 } and decode exponent[i] as
b[10] × (-1)b[11] × ( b[7] × 1 +  ... + b[9] × 4). We
normalise mantissa[i] by 64 to  range them in [0, 1]. From
our experiments, normalised mantissa always gives a
better results than unnormalised one. Hence, the set of
possible values of each x[i] is {0}∪{1.56×10-9, ..., 107}
which is wide enough. The bit b[6] is used to reset
mantissa[i] to 0 while b[10] is used to reset exponent[i].

5. EXPERIMENTAL RESULTS

We run experiments to test hypothesis. We first determine
by experiments the most optimised BNN-configuration,
i.e., the learning rate, the momentum and the convergence
condition to ensures the worth of FL.

Data set All training and test characters in our
experiments are printed by a 300-dpi laser printer and
scanned into the computer with the same resolution
scanner. Let E and C stand for the sets of Eucrosia and
Cordia fonts, respectively. Let Edarker and Cdarker denote
noised Eucrosia and noised Cordia fonts, which are
obtained by copying the images by a photocopy machine
with darker setting. In the same way, let Elighter and Clighter

denote noised Eucrosia and noised Cordia fonts, which
are obtained by copying the images by a photocopy
machine with lighter setting. These images consist of 77

different Thai characters ('ก', ... , '๙') and 7 sizes (20, 22,

24, 28, 32, 36 and 48 points). Therefore, the size of each
set ( | E |, | C |, | Edarker |, | Cdarker |, | Elighter |, or  | Clighter | ) is
equal to 77×7 = 539.

Experimental results There are three cases of
experiments. We compare our proposed method with the
optimised ILP&BNN [2]. All experiments use the same
test data set, i.e., Edarker∪Cdarker∪Elighter∪Clighter which is of
size | Edarker∪Cdarker∪Elighter∪Clighter | = 4×539 = 2,158.

Experiment 1 uses the training set E∪C which is of
size 2×539 = 1,078. Experiment 2 uses the training set E
which is of size 539. Experiment 3 uses the training set
E20 = { x ∈ E | x is a 20-point font } which is of size | E20 |
= 77. All experiments use the same genetic configuration
mentioned earlier. By evaluating the fitness of genomes,
the genomes that produce good recognition accuracy are
picked. After enough iterations of the GA, the genome
that produces the best recognition accuracy is established.
The recognition accuracy of the final generation on each
experiments are shown in Table 1. We can say that FL
affects the changing of synaptic weights, and this makes
BNN more flexible for recognising imperfect chracters.

Table 1: Recognition accuracy of the final generation.
Exp. #train #test ILP&

BNN
ILP&

BNN&FST
1 1,078 2,158 94.77% 96.13%
2 539 2,158 84.23% 86.93%
3 77 2,158 67.94% 74.80%

avg. 82.31% 85.95%

6. CONCLUSION

This paper presents an application of FL for improving
the approximate match of ILP rules based on the BNN.
With the help of FL, the evaluation of the truth values of
logic programs is more sophisticated, before the values
are fed to the BNN for learning or for recognising. GA is
used to find the best fuzzy sets. Currently, the standard
fuzzy operations are used, another fuzzy operations may
give an additional improvement.
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