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Abstract
This paper proposes a method to improve 

robustness of the robot programs generated by genetic 
programming.   The main idea is to perturb the 
simulated environment during evolution of the 
solutions.  The resulting robot programs are more robust 
because they have been evolved to tolerate the changes 
in their environment.  We set out to test this idea using 
the problem of navigating a mobile robot from a starting 
point to a target point in an unknown cluttered 
environment where obstacles can be moved 
dynamically.  The result shows the effectiveness of this 
scheme.

1. Introduction
The solutions of robot learning problems generated 

by genetic programming method (GP) are said to be 
"fragile".  That is, they fail to work when there is even a 
small change in the operational environment such as 
robots working in the real world.  An example can be 
drawn from our previous work [3], in a visual reaching 
task, GP is used to generate robot programs that control 
an arm to reach a target.  When there are small changes 
such as an obstacle is moved from its position, or the 
control of a real robot misses a step due to random 
noise, the robot programs fail to work. This is because 
GP procedure relies on a simulated world to evaluate 
and to "evolve" the solution. The initial condition for 
the actual run of a robot program in the real world must 
be exactly the same as in the simulation, even a small 
deviation can lead to failure.  The accuracy of the world 
model is an important factor for the success.    Most of 
the work in GP use the simulated world to perform 
learning.  The problem of transferring the result from 
the simulated world to the real world has been widely 
recognised [1,2, 5, 7, 10, 11].

To cope with changes, many researchers suggest 
the use of physical robots to learn in the actual 
environment of the tasks [5].  The robot will learn by 
trial and error.  This approach is suitable for many 
learning tasks such as learning the association between 
sensing and effectors.  However, the attempt to use GP 
as the learning method using this approach  will likely 

take too much time because of the speed limit of a 
physical robot.  The work in [3] shows that for a visual-
reaching task, it will take 2,000 hours with their 
equipments to learn the task.  It is possible to reduce the 
time by running GP in simulation that samples data 
from the real world [9, 11, 13].

Another approach to cope with changes is to 
subject the "evolved" system to perturbation expecting 
that the resulting solution will be more tolerant. The 
work such as [7, 12] introduce perturbation at every step 
of evolutionary process. They report limited success.  
From the experience of our previous work, we notice 
that we can introduce limited perturbation "in between" 
generation with good results, i.e. during a generation, 
we keep everything constant.  Another observation is 
that we can take a successful individual and continue to 
"evolve" it for a new environment which is changed 
only slightly from the previous one.

This paper proposes to use perturbation to improve 
robustness of the robot programs.   The main idea is to 
perturb the simulated environment during evolution of 
the solutions.  The evolution process is carried out such 
that each individual is evaluated under several 
environments that are variant of one original.  The 
resulting robot programs are more robust because they 
have been evolved to tolerate the changes in their 
environment.  We set out to test this idea using the 
problem of navigating a mobile robot from a starting 
point to a target point in an unknown cluttered 
environment (fig. 1).  The next section explains the 
experiment and the result.

2. The Experiments
First, we discuss how to generate a robot program 

by GP under the normal simulation without 
perturbation.  The mobile robot has capability to move 
forward and turn left and right.  The robot can sense an 
obstacle in front of it.  The environment is simulated on 
grids of size 600 × 400 units.   The obstacles have 
several geometrical shapes, each has the average area 20 
× 20 units.  The number of obstacles are determined to 
have their total area 20 % of the whole area.  The 
obstacles are randomly but carefully placed such that 
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they  stay some distance from the starting point and the 
target point to make sure the robot has room to move.

The terminal set in our experiment is { move, 
left, right, isnearer? }.  The function set is { 
if-and, if-or, if-not } with the arity 4, 4 and 3 
respectively.  The move returns 1 when the robot hits an 
obstacle while moving forward and 0 otherwise.  The 
isnearer? is the gradient operator to enable the robot 
to seek  the target point.  It indicates whether the robot 
is nearer to the target compared to its position in the 
previous move.

The fitness measure is based on the distance of the 
final position of robot to the target and the number of 
moves.  In this experiment smaller value is better.  The 
fitness function is

f = kd + m                              (1)

where d is Euclidean distance of the final position 
and the target point, d = 0 if the robot reaches the target.  
k = 10,000 and m = the number of moves.  This fitness 
function promotes the solution with minimum number 
of moves.  The parameters for the genetic programming 
run are: population size 960, maximum number of 
generation 200.  A simulation run is time-out when a 
robot executes 10,000 terminals.

The genetic operations are as follows:
1. The population is ranked according to their 

fitness value and the best 30 are selected as parents.
2. The parents are reproduced to the next 

generation.
3. All possible pairing of parents are subject to 

crossover to produce offsprings.
4. The mutation is performed on parents by 

randomly replacing symbols with a newly generated 
tree.

The size limit of an offspring is not to be larger 
than 5 levels tree height.

3. Evolving Robot Programs in a Dynamic 
Environment

Next, we describe how to use perturbation to 
improve the robustness of the solutions.  To improve 
robustness of the solutions, the evolution is carried out 
under several environments each of which is a variation 
from the original environment.   An initial 
configuration E is perturbed to produce E’.   An obstacle 
is randomly selected and moved in a random direction 
by a displacement (s).  The number of obstacles that is 
moved is called the percent of disturbance ( e ).

e  =   number of obstacles that is moved   /
total number of obstacles                  (2)

The evolution is performed by simulating each 
individual under a number of environment, say En’ 
where n is the number of variation of environment (n = 
1 is the original environment).  The fitness is evaluated 
by totaling all the fitness value fn, where fn is the fitness 
under the environment n.  During the evolution process, 
the disturbance is constant.  The parameters in the 
experiments are: s = 8 units, e = 20 %, n = 1, 5, 10, 15, 
20.

Robustness are measured by selecting the best 
individual from the maximum generation and evaluate 
it under 2000 new environments that are variant of the 
original.  The measure of robustness is the number of 
success of that  individual  under these new 
environments.  The percent of disturbance (e) is varied 
from 0-100% to measure robustness against disturbance.

Result and Discussion
The result is shown in fig. 2.   The robustness is 

better for the larger n, the number of environment.  For 
example, at the disturbance 60 % the robustness 
improves from 30 % for n = 1 to 80 % for n = 20.  The 
solution evolved under 20 environments (n = 20 ) shows 
highest robustness across all the range of disturbance. 
This result demonstrates clearly the effectiveness of the 
proposed scheme.

From this result, we have extended our experiment 
by running the best solution under a continuously 
changing environment.  The environment is perturbed 
incrementally and continuously every t simulation steps.  
The initial result confirms that the best solution 
performs robustly under this environment.

It is noteworthy to observe that many previous 
work on genetic programming for robot learning are 
performed with a static environment.  The ‘dynamic’ 
aspect of the environment is considered a ‘disadvantage’ 
that must be dealt with.  This work actually ‘exploits’ 
this dynamic aspect of the environment and uses it to 
improve the quality of the solution.  Our current activity 
is concentrated on validating this proposed scheme with 
the real robot performing in the real world.
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Figure 1  The environment of the mobile robot navigation problem
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Figure 2  The robustness graph


