
1998 IEEE Asia-Pacific Conference on Circuits and Systems, Chiangmai, Thailand. (IEEE APCCAS 98)

 Improving Robustness of Robot Programs Generated by Genetic Programming
for Dynamic Environments

Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Phyathai Rd., Bangkok 10330, THAILAND

Tel (662) 218 6956, Fax (662) 218 6955
prabhas@chula.ac.th

Abstract
This paper proposes a method to improve

robustness of the robot programs generated by genetic
programming. The main idea is to perturb the
simulated environment during evolution of the
solutions. The resulting robot programs are more robust
because they have been evolved to tolerate the changes
in their environment. We set out to test this idea using
the problem of navigating a mobile robot from a starting
point to a target point in an unknown cluttered
environment where obstacles can be moved
dynamically. The result shows the effectiveness of this
scheme.

1. Introduction
The solutions of robot learning problems generated

by genetic programming method (GP) are said to be
"fragile". That is, they fail to work when there is even a
small change in the operational environment such as
robots working in the real world. An example can be
drawn from our previous work [3], in a visual reaching
task, GP is used to generate robot programs that control
an arm to reach a target. When there are small changes
such as an obstacle is moved from its position, or the
control of a real robot misses a step due to random
noise, the robot programs fail to work. This is because
GP procedure relies on a simulated world to evaluate
and to "evolve" the solution. The initial condition for
the actual run of a robot program in the real world must
be exactly the same as in the simulation, even a small
deviation can lead to failure. The accuracy of the world
model is an important factor for the success. Most of
the work in GP use the simulated world to perform
learning. The problem of transferring the result from
the simulated world to the real world has been widely
recognised [1,2, 5, 7, 10, 11].

To cope with changes, many researchers suggest
the use of physical robots to learn in the actual
environment of the tasks [5]. The robot will learn by
trial and error. This approach is suitable for many
learning tasks such as learning the association between
sensing and effectors. However, the attempt to use GP
as the learning method using this approach will likely

take too much time because of the speed limit of a
physical robot. The work in [3] shows that for a visual-
reaching task, it will take 2,000 hours with their
equipments to learn the task. It is possible to reduce the
time by running GP in simulation that samples data
from the real world [9, 11, 13].

Another approach to cope with changes is to
subject the "evolved" system to perturbation expecting
that the resulting solution will be more tolerant. The
work such as [7, 12] introduce perturbation at every step
of evolutionary process. They report limited success.
From the experience of our previous work, we notice
that we can introduce limited perturbation "in between"
generation with good results, i.e. during a generation,
we keep everything constant. Another observation is
that we can take a successful individual and continue to
"evolve" it for a new environment which is changed
only slightly from the previous one.

This paper proposes to use perturbation to improve
robustness of the robot programs. The main idea is to
perturb the simulated environment during evolution of
the solutions. The evolution process is carried out such
that each individual is evaluated under several
environments that are variant of one original. The
resulting robot programs are more robust because they
have been evolved to tolerate the changes in their
environment. We set out to test this idea using the
problem of navigating a mobile robot from a starting
point to a target point in an unknown cluttered
environment (fig. 1). The next section explains the
experiment and the result.

2. The Experiments
First, we discuss how to generate a robot program

by GP under the normal simulation without
perturbation. The mobile robot has capability to move
forward and turn left and right. The robot can sense an
obstacle in front of it. The environment is simulated on
grids of size 600 × 400 units. The obstacles have
several geometrical shapes, each has the average area 20
× 20 units. The number of obstacles are determined to
have their total area 20 % of the whole area. The
obstacles are randomly but carefully placed such that

1998 IEEE Asia-Pacific Conference on Circuits and Systems, Chiangmai, Thailand. (IEEE APCCAS 98)

they stay some distance from the starting point and the
target point to make sure the robot has room to move.

The terminal set in our experiment is { move,
left, right, isnearer? }. The function set is {
if-and, if-or, if-not } with the arity 4, 4 and 3
respectively. The move returns 1 when the robot hits an
obstacle while moving forward and 0 otherwise. The
isnearer? is the gradient operator to enable the robot
to seek the target point. It indicates whether the robot
is nearer to the target compared to its position in the
previous move.

The fitness measure is based on the distance of the
final position of robot to the target and the number of
moves. In this experiment smaller value is better. The
fitness function is

f = kd + m (1)

where d is Euclidean distance of the final position
and the target point, d = 0 if the robot reaches the target.
k = 10,000 and m = the number of moves. This fitness
function promotes the solution with minimum number
of moves. The parameters for the genetic programming
run are: population size 960, maximum number of
generation 200. A simulation run is time-out when a
robot executes 10,000 terminals.

The genetic operations are as follows:
1. The population is ranked according to their

fitness value and the best 30 are selected as parents.
2. The parents are reproduced to the next

generation.
3. All possible pairing of parents are subject to

crossover to produce offsprings.
4. The mutation is performed on parents by

randomly replacing symbols with a newly generated
tree.

The size limit of an offspring is not to be larger
than 5 levels tree height.

3. Evolving Robot Programs in a Dynamic
Environment

Next, we describe how to use perturbation to
improve the robustness of the solutions. To improve
robustness of the solutions, the evolution is carried out
under several environments each of which is a variation
from the original environment. An initial
configuration E is perturbed to produce E’. An obstacle
is randomly selected and moved in a random direction
by a displacement (s). The number of obstacles that is
moved is called the percent of disturbance (e).

e = number of obstacles that is moved /
total number of obstacles (2)

The evolution is performed by simulating each
individual under a number of environment, say En’
where n is the number of variation of environment (n =
1 is the original environment). The fitness is evaluated
by totaling all the fitness value fn, where fn is the fitness
under the environment n. During the evolution process,
the disturbance is constant. The parameters in the
experiments are: s = 8 units, e = 20 %, n = 1, 5, 10, 15,
20.

Robustness are measured by selecting the best
individual from the maximum generation and evaluate
it under 2000 new environments that are variant of the
original. The measure of robustness is the number of
success of that individual under these new
environments. The percent of disturbance (e) is varied
from 0-100% to measure robustness against disturbance.

Result and Discussion
The result is shown in fig. 2. The robustness is

better for the larger n, the number of environment. For
example, at the disturbance 60 % the robustness
improves from 30 % for n = 1 to 80 % for n = 20. The
solution evolved under 20 environments (n = 20) shows
highest robustness across all the range of disturbance.
This result demonstrates clearly the effectiveness of the
proposed scheme.

From this result, we have extended our experiment
by running the best solution under a continuously
changing environment. The environment is perturbed
incrementally and continuously every t simulation steps.
The initial result confirms that the best solution
performs robustly under this environment.

It is noteworthy to observe that many previous
work on genetic programming for robot learning are
performed with a static environment. The ‘dynamic’
aspect of the environment is considered a ‘disadvantage’
that must be dealt with. This work actually ‘exploits’
this dynamic aspect of the environment and uses it to
improve the quality of the solution. Our current activity
is concentrated on validating this proposed scheme with
the real robot performing in the real world.

References
[1] Chongstitvatana, P. and Polvichai, J. "Learning a

visual task by genetic programming", in Proc. of
IEEE/RSJ Int. Conf. on Intelligent robots and
systems (IROS96), Osaka, 1996.

[2] Brooks, R., “Artificial Life to actual robots”, in
Proc. of the first European conf. on Artificial Life,
MIT Press, 1991, pp.3-10.

[3] Chang, T., Kuo, S. and Hsu, J., “A two phase
navigation system for mobile robots in dynamic
environments”, in Proc. of 1994 IEEE/RSJ Int.

1998 IEEE Asia-Pacific Conference on Circuits and Systems, Chiangmai, Thailand. (IEEE APCCAS 98)

Conf. on Intelligent Robots and Systems, pp. 297-
300.

[4] Dorigo, M., “ALECSYS and the AutonoMouse:
Learning to control a real robot by distributed
classifier systems”, Machine learning, vol. 19,
1995, pp.209-240.

[5] Ito, H. Iba and M. Kimura, “Robustness of robot
programs generated by Genetic Programming”, in
Proc. of Conf. Genetic Programming 96, MIT
Press, 1996.

[6] Mataric, M. and Cliff, D., “Challenges in evolving
controllers for physical robots”, in Robotics and
autonomous systems, 19(1):67-83, 1996.

[7] Miglino, O., Lund, H. and Nolfi, S. , “Evolving
mobile robots in simulated and real environments”,
in Artificial Life 2(4), 1996.

[8] Lee, W., Hallam, J. and Lund, H., “Applying
genetic programming to evolve behavior primitives
and arbitrators for mobile robots”, in Proc. of IEEE
Int. Conf. on Evolutionary Computation, 1997, pp.
501-506.

[9] Nordin, P. and Banzhaf W., "An on-line method to
evolve behavior and to control a miniature robot in
real time with genetic programming", in Adaptive
Behavior, 5(2) : 107-140, 1997.

[10] Reynolds, C., “Evolution of obstacles avoidance
behavior: using noise to promote robust solutions”,
in K. Kinnear, Ed., Advances in genetic
programming. MIT Press, 1994.

1998 IEEE Asia-Pacific Conference on Circuits and Systems, Chiangmai, Thailand. (IEEE APCCAS 98)

Figure 1 The environment of the mobile robot navigation problem

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20

10

20

30

40

60

80

100

ro
bu

st
ne

ss
 %

the number of trainning environment

disturbance %

Figure 2 The robustness graph

