
Development of a data reading device for a CD-ROM drive
with FPGA technology

P. Nanthanavoot and P. Chongstitvatana
Department of Computer Engineering, Faculty of Engineering,

Chulalongkorn University, Bangkok 10330, Thailand.
Phone (66-2) 2218-6956, Fax 0-2218-6955 E-mail: prabhas@chula.ac.th

ABSTRACT

This paper presents a design of a device that can access a
CD-ROM drive in the IDE standard. The device is
implemented with Verilog HDL (Hardware Description
Language) and FPGA (Field Programmable Gate Array)
technology. The system consists of three components: (i)
Processing Unit that controls all system operations, (ii)
Address Decoder for managing the address space of
data, stack and input/output ports and (iii) IDE Host
Adapter for interfacing with a CD-ROM drive. The
development begins with designing and coding the
system in Verilog HDL. The simulation is performed to
test that it can access data from the CD-ROM drive.
Finally, the system is synthesized targeting a FPGA chip
and the amount of resources is reported.

KEYWORDS: CD-ROM, IDE interface, ATA/ATAPI,
Verilog HDL, FPGA.

1. INTRODUCTION

Presently, the world has fully acknowledged the
importance of information and the requirement for data
storage has grown exponentially. One of the widely used
media is CD-ROM due to its many advantages, for
instance, its large capacity at a lower cost and its more
compact size compared to other media. Moreover the
CD-ROM can be used with many types of platforms.

For many systems, which interface to a IDE device
[1,2,3,4], most developers use software-programmable
microcontrollers for accessing the devices in the IDE
standard. For example, [1,2,3] use PIC 16F877 – 20
MHz clock as the processor to drive an IDE connector
directly from its ports. These devices are software
driven. Although it is easy to develop and modify, it has
a high overhead execution in each IDE device accessing
operation.
 To reduce the execution overhead, this research
focuses on designing a system which has a special
hardware for interfacing between the processing unit and
a IDE CD-ROM drive. The system is implemented with
FPGA (Field-Programmable Gate Array) technology. It
is designed in RTL (Register-Transfer Level) model and
coded in Verilog HDL [5]. Because of these reasons, all
system’s component can be modified easily and can be
implemented in one chip.

2. CD-ROM DRIVE AND IDE INTERFACE

The IDE interface is used in secondary storage, e.g.
a hard disk, a CD-ROM drive and a tape drive. The IDE
interface has a protocol called ATA/ATAPI (AT
Attachment/ ATA Packet Interface) [6,7,8,9]. This
protocol declares the characteristics and commands to
access IDE device. CD-ROM drive uses the commands,
which are defined in ATAPI protocol.

To use a CD-ROM drive, such as requesting an
identical information, reading raw data or resetting the
drive, the access is through specific internal registers in
the CD-ROM drive. Four signals to access these
registers are: CS[1:0]-, DA[2:0], DIOR- and DIOW-.
The requested data is transferred by 16-bit data bus:
DD[15:0]. The internal registers in a CD-ROM drive
consist of two blocks: Command Block Register and
Control Block Register, which are selected by CS[1:0]-
signal. The DA[2:0] signal is used to choose a register in
that block. Reading and writing registers may perform
different functions. The details are defined in
ATA/ATAPI protocol.

The timing constraint, timing diagram and minimum
period of accessing registers, in PIO mode 4
(Programmable Input/Output) of ATA/ATAPI protocol
are shown in Figure 1 and Table 1.

Write valid

Read valid

t0

t2it2

Address valid

DIOR-/DIOW-

Write DD[7:0]

Read DD[7:0]

t3 t4

t5 t6

t1

Figure 1. Timing diagram in accessing registers.
Register transfer timing parameters Time

t0 Cycle time (min) 120 ns
t1 Address valid to read/write setup (min) 25 ns
t2 DIOR-/DIOW pulse width (min) 70 ns
t2i DIOR-/DIOW recovery time (min) 25 ns
t3 DIOW- data setup (min) 20 ns
t4 DIOW- data hold (min) 10 ns
t5 DIOR- data setup (min) 20 ns
t6 DIOR- data hold (min) 5 ns

Table 1. Minimum period of accessing registers.

3. SYSTEM DESIGN

The system is designed in RTL (Register Transfer
Level). It is synthesized and implemented with FPGA.
The system is separated into 3 parts: Processing Unit,
Address Decoder and IDE Host Adapter. The system
block diagram is shown in Figure 5, which is at the end
of this article.

3.1 PROCESSING UNIT

The processing unit in this system is developed for an
embedded web server [10]. It is expected to replace the
MCS-51 microcontroller in that work. The processing
unit is a 16-bit processor, it has no pipeline and no
interrupt. There are two 16-bit buses for data and
instructions. The memory is divided into two parts:
instruction memory and data memory. This processing
unit has four 16-bit registers and two flags. A block
diagram of the processing unit is shown in Figure 6.

The processing unit has twenty-seven 16-bit
instructions. The instructions are divided into three
groups: (i) Arithmetic and Logic instructions, (ii) Jump
instructions and (iii) Load/Store instructions.

Because the processing unit is designed to be used in
embedded systems, the architecture of the processing
unit is simple and compact. The whole system is small
enough to be implemented on a FPGA with spare
resources for I/O interface.

3.2 ADDRESS DECODER AND ADDRESS SPACE
MANAGEMENT

The processing unit has no specific I/O instructions.
Memory-mapped I/O [11] is used to interface between
the processing unit and I/O devices. The processing unit
accesses I/O devices through Load/Store instructions for
reading or writing data to I/O registers. The system
address space is separated into three portions: (i) address
FFF0-FFFF is assigned for I/O access, (ii) address FF00-
FFEF is assigned for stack and (iii) address 0000-FEFF
is data memory allocation. The address space is shown in
Figure 2.

FFFF

FFF0

FF00

0000

Memory-mapped I/O

Stack

General Memory

Figure 2. The address space definition.

The module, which manages the system address
space, is Address Decoder. It decodes a data address of
Load/Store instruction and sends the requested signals to
data memory or I/O devices.

3.3 IDE HOST ADAPTER

The CD-ROM drive is accessed through its internal
registers. The IDE Host Adapter is a special purpose

hardware, its function is to handle accessing internal
registers in the CD-ROM drive. The processing unit
controls the IDE Host Adapter through 3 registers in the
IDE Host Adapter. The adapter block diagram and its
register are shown in Figure 3 and Table 2.

Command Register

Status Register

Data Register

Controller

16

16

16

16

2

2

16

16

D
a
t
a

B
u
s

data bus load

sta_load

ior-

iow-

Address
Bus

Device Data Bus dior-diow- drst-

Data Path

device bus load

data out

data select

command load

command

status

DA CS

3 2

Figure 3. IDE Host Adapter block diagram.

Register Name Address Read/Write

Host Status FF08 Read Only
Data Buffer FF09 Read/Write
Command Buffer FF0A Write Only
Table 2. Registers in IDE Host Adapter.

� Host Status Register is a register, representing the
status of the adapter. It is a 2-bit register. The first
bit (bit 0) is a status of data that is kept in Data
Buffer Register and the second bit (bit 1) is IDE
Host Adapter working status.

� Data Buffer Register is a 16-bit register that stores
data while reading or writing from/to internal
registers in the drive.

� Command Buffer Register is a 6-bit register that
stores a command, which specifies an address for
accessing an internal register in the drive.

The IDE Host Adapter supports the CD-ROM drive
in PIO mode 4 (Programmable Input/Output). The access
method begins with the processing unit checking the
status of the IDE Host Adapter by polling data from Host
Status Register until it indicates that the adapter is not
busy (BSY bit in Host Status = 0). When it is ready, the
processing unit sends a Store instruction to write a
command, which defines the register access parameter
(Read/Write- access, CS[1:0]- and DA[2:0]), to
Command Buffer Register in the adapter. If the
command in Command Buffer Register is a read request,
the IDE Host Adapter will request data. The processing
unit must poll data from Host Status Register until it
indicates that data is ready in Data Buffer Register and
then the processing unit can read the data from Data
Buffer Register using Load instruction. If the command
is a write command, the processing unit must store a

data, which is required to be transmitted, to Data Buffer
Register. After the adapter received the data, it will
request and send the data to an internal register in the
drive.

4. SYSTEM SIMULATION AND SYNTHESIS

After designing and coding, the system is simulated to
test its functionality. The simulation is running on an
artificial environment that is similar to the system
working in the real world. This environment is separated
into hardware modules and the program. The hardware
modules are such as CD-ROM drive, ROM and RAM.
They are implemented with behavioral models, which
describe their timing. The program has all basic
functionality for interfacing with a CD-ROM drive such
as accessing the internal registers in the drive.

Figure 4 is a part of simulation result. The task is to
read data from internal registers at CS[1:0]- = 10 and
DA[2:0] = 101. From Figure 4, there are three steps in
reading data: (i) The processing unit writes a command
110101 to Command Buffer in IDE Host Adapter. (ii)
when the IDE Host Adapter receives a command, it
requests data by sending signal CS[1:0]- = 10 and
DA[2:0]- = 101. (iii) The processing unit polls data
status until Host Status register is set to indicate the data
is ready to be read, then the processing unit reads that
data and keeps it in its general register.

Finally, the system is synthesized with Xilinx
Foundation 2.1i Series tool, the synthesized result is
shown in Table 3.

From the synthesized result in Table 3, the total
resource is 3614 equivalent gates. It must be realized
with a FPGA that has enough resource such as
SPARTAN S20VQ100.

CPU Synthesis.
==============
Design Summary:
 Number of errors: 0
 Number of warnings: 1
 Number of CLBs: 170 out of 400 42%
 CLB Flip Flops: 19
 4 input LUTs: 292
 3 input LUTs: 45
 Number of bonded IOBs: 69 out of 77 89%
 IOB Flops: 16
 IOB Latches: 0
 Number of clock IOB pads: 1 out of 8 12%
 Number of primary CLKs: 1 out of 4 25%
 Number of secondary CLKs: 3 out of 4 75%
Total equivalent gate count for design: 2486
Additional JTAG gate count for IOBs: 3312

Addressing Decoder.
===================
Design Summary:
 Number of errors: 0
 Number of warnings: 1
 Number of CLBs: 7 out of 400 1%
 CLB Flip Flops: 0
 4 input LUTs: 14
 3 input LUTs: 0
 Number of bonded IOBs: 18 out of 77 23%
 IOB Flops: 0
 IOB Latches: 0
Total equivalent gate count for design: 84
Additional JTAG gate count for IOBs: 864

IDE Host Adapter.
=================
Design Summary:
 Number of errors: 0
 Number of warnings: 1
 Number of CLBs: 58 out of 400 14%
 CLB Flip Flops: 39
 4 input LUTs: 105
 3 input LUTs: 10
 Number of bonded IOBs: 46 out of 77 59%
 IOB Flops: 5
 IOB Latches: 0
 Number of clock IOB pads: 1 out of 8 12%
 Number of primary CLKs: 1 out of 4 25%
 Number of secondary CLKs: 1 out of 4 25%
Total equivalent gate count for design: 1044
Additional JTAG gate count for IOBs: 2208

Table 3. Synthesized result.

Figure 4. Simulation result.

5. CONCLUSION

This work presents a design and simulation of a system,
which interface with a IDE CD-ROM drive. The
advantage of using Verilog HDL in design is that the
system can be modified easily. Because of FPGA
technology, all system components can be synthesized
into one chip.

The system has a special purpose hardware interface
to the IDE CD-ROM drive so it has an advantage over
the other design that use software-programmable
microcontroller to access a CD-ROM drive directly. It
reduce the execution overhead of microcontroller
operations. Moreover it facilitates the development
because programmers do not have to concern about
timing constraints in the IDE standard.

6. REFERENCES

[1] M.Samuels, PIC a CompactFlash Card, Circuit
Cellar online, February 2001.

[2] J.Margolin, Standalone Controller for an IDE CD-
ROM Drive, http://www.jmargolin.com/project/
cdrom.htm, 2000.

[3] A. Pierre, S. Alexander, ASPAMP3 Dedicated
MP3-CD Player, Fellenberg Training Center for
Industrial Electronic, 2001.

[4] ARMA Design, CompactFlash Development Kit,
http://www.armanet.com/Pages/engineeringright.ht
ml

[5] D.Thomas, P.Moorby, The Verilog® Hardware
Description Language Second Edition, Kluwer
Academic Publishers, 1975.

[6] T13 Technical Committee, Information Technology
– AT Attachment with Packet Interface-5
(ATA/ATAPI-6) reversion 3, April 2000.

[7] T13 Technical Committee, Information Technology
– AT Attachment with Packet Interface-6
(ATA/ATAPI-6) reversion 2a, April 2000.

[8] Small Form Factor Committee, ATA Packet
Interface for CD-ROMs: SFF-8020I, 1996.

[9] F.Schemidt, The SCSI Bus and IDE Interface:
Protocol, Application and Programming, Addison-
Wesley Publishing, 1995.

[10] K. Piromsopa, Development of A Reconfigurable
Embedded Web Server, Master Thesis,
Chulalongkorn University, Thailand, 2000.

[11] D.Patterson, J.Henessy, Computer Organization and
Design: The Hardware/Software Interface, Morgan
Kaufmann Publishers, 1997.

ABOUT THE AUTHORS

Phanupan Nanthanavoot graduated in Bachelor degree
of Computer Engineering, Chulalongkorn University,
Thailand, 2001. He is studying Master degree of
Computer Engineering, Chulalongkorn University,
Thailand.

Prabhas Chongstitvatana earned BEng (EE) from
Kasetsart University 1980 and PhD from the department
of artificial intelligence, Edinburgh University, UK
1992. Presently, he is with the department of computer
engineering, Chulalongkorn University. His research
included robotics, evolutionary computation and
computer architecture.

Processing
Unit

Address
Decoder

RAM

IDE Host
Adapter

Address Bus

Data Bus

Instruction Address

Instruction Code

rom enable

data
access

rd/wr-

ram enable

ram rd/wr-

ROM

ior-

iow-

CS

DA

dior-

diow-

16

16

16

16

2

3

Device Data Bus

2

16

Figure 5. System block diagram.

IR

Register
File

ALU

C Z

PC DecoderPC

Sign
Extension

opcode

mem_sel1
d_data_out

op_sel

pc_load
pc_sel pc_sel1

mem_sel

opcode

ir_load

reg_load

ld_sel

reg_sel

offset

Data
Bus

Address Bus

Instruction
Address

Instruction CodeData Bus

immediate

16

16

16

16

11

8a_out

b_out

16

16

Figure 6. Processing Unit block diagram

