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Abstract 
 
This work describes a new investigation of the 
problem of instruction set design: How to make 
the program as small as possible.  The proposed 
method, called "nibble coding", compresses two 
instructions into one byte.  The experiment is 
carried out to compare conventional byte-code 
instruction and a typical 32-bit machine code 
with the nibble coding.  The result shows the 
proposed scheme achieves a smaller instruction 
bandwidth than a byte-code virtual machine and 
is much smaller than the conventional executable 
machine code. 
 
Introduction  
 
In the last decade the progress of microprocessor 
design has been phenomenal.  Performance 
improvement rises according to Moore's law.  
The performance is double every 18 months.  
With this progress, there emerges strong leader 
of the manufacturers.  The market competition 
forces the architecture to slowly converge.  
Instruction Set Architecture (ISA) has become 
not as important issue as the previous decade 
where the market was still young.  Drive for 
performance is the key for the progress of the 
last decade.  However, the new applications have 
shifted the design landscape once again to low 
power, portable devices [1].  The technology for 
implementing computational devices in small 
batch with fast turnaround time has opened up 
the issue of ISA design.   
 
For some very small devices, the instruction 
storage can be critical.  This work describes a 
new investigation of the old problem: How to 
make the instruction (program) as small as 
possible.  We experimented with instruction 
encoding and proposed to compress two 
instructions into one byte.   This scheme is called 
"nibble coding".  The investigation is carried out 
to compare the instruction bandwidth using the 
measure of dynamic instruction count on a small 
suite of benchmark programs.  The result shows 

that this scheme achieves a much smaller code 
size.  Reducing the size of machine code has 
benefit in two aspects.  The first one is obvious 
in reducing the storage requirement, both in code 
segment and in instruction cache memory.  This 
is often the reason behind many classic 
instruction set architecture, to achieve very 
compact executable code.  The second one is 
related to power requirement.  As the instruction 
bandwidth is reduced, the power consumption is 
also reduced [2, 3]. 
 
Stack machines 
   
Conventional machine code is not the most 
compact form to represent an executable code.  
The intermediate code for a virtual machine is 
usually much smaller because of its higher 
semantic content.  One of the most popular form 
of intermediate code is based on stack 
addressing.  A stack machine code is very 
compact due to its use of stack which oes not 
required addressing bit.  Majority of instructions 
thus do not required the operand in the 
instruction as it is implicit in the stack.  Basically 
the stack instruction has two forms:  zero 
argument and one argument.  All arithmetic and 
logic instructions are zero argument.  The 
jump/call load/store instructions have one 
argument, the address of jump or the data 
memory.  The most well-known stack virtual 
machine is Java Virtual Machine (JVM) [4] as it 
is embedded into most browser.  Its machine 
code is called byte-code.  As the name implied, 
the format of code is byte oriented where most 
instruction is one byte. 
 
Code compression 
 
There are a number of work in code compression 
[5, 6].  This work differs in that it is concentrated 
on the virtual machine code.  The method to 
pack instructions into a smaller space in this 
work is based on the following techniques: 



1. Extended instruction, making a special 
instruction that replace several simple 
instructions. 

2. Specialization, eliminate argument by 
making an instruction special to a particular 
argument thus reduce the size of instruction. 

3. Reduce the size of argument, by using a 
literal table that store a number of full-size 
arguments. The argument of the instruction 
can be replaced by the index into this table.  
The index is much smaller than full-range of 
argument as there are small finite number of 
different variables in a program.   

4. Packing two instructions into one 
instruction, this technique is called "nibble 
coding".  This is the main contribution of 
this work. 

 
Extending instruction set is a very powerful 
method and has potential to reduce the size of 
code beyond what achievable by other methods.  
It has been explored in our previous work [7].  
For example, the expression i = i + 1  which 
can be translated into the following sequence of 
stack code:  address of i, value of i,

literal 1, plus, store, totally five 
instructions can be replaced by one special 
instruction: increment i.  However, beside 
some obvious idiom, selection of special 
instructions faces combinatorial explosion as the 
combination of code grows very fast with the 
length of sequence.  Another limitation of this 
technique is that except combination of length 
two, it is applicable only to a small percentage of 
the whole program.  In this study we measured 
the use of this technique and found that it 
contributes only 10% of the code size reduction 
both in static measure and in dynamic measure.  
By static measure, we mean the size of the 
program. By dynamic measure we mean the 
counting of the number of byte of executed 
instructions, this measures the instruction 
bandwidth.  
 
To specialize instructions the frequency of use of 
each instruction including its argument is 
measured.  A number of most often used 
instructions are then made into special 
instructions with no argument.  This method 
eliminate the space to store argument 
completely.   
 
Using a table to store literals in a program can 
save large amount of bit in instructions that are 
required to store full-size literals such as the 
address of a variable.  An index into this table is 

used as argument instead.  The size of this index 
depends on the size of the table.  A careful 
judgement is required to balance the size of the 
table to cover large number of literals appeared 
in a program without making the size of index 
too large.   
 
Nibble coding is the main technique to encode 
two instructions into one.  The instruction space 
is divided into normal instructions and packed 
instructions.  For example for byte-code format 
the normal instructions occupies half of 256 
instructions and the rest is for packed 
instructions.  The space for instruction encoding 
is limited to half length of the normal instruction, 
for example 7 bits is remained to pack two 
instructions in the byte-code format.  The choice 
of two-instruction combination is based on: 
� the frequency of use, by compacting the 

most used combination, the impact in 
dynamic code compression is maximised. 

� the frequency of occurrence, the 
combination that appears most frequently in 
the program will reduce the static code size.  

 
The nibble coding can be designed to be 
orthogonal, that is, it can be full combination of 
the selected instructions.  In this aspect, it can be 
applied to a large percentage of code sequence.  
This is in contrast to the extended instruction 
concept mentioned previously.  The result of this 
technique can achieve 50% code size reduction 
in average when the selection of instruction 
covers the program well. 
 
To investigate the idea, the experiment of 
application of these techniques is carried out 
using a stack virtual machine.  Various effects 
are measured to acertain their actual contribution 
to code compression.  The detail of which will be 
describe in the next section. 
 
Baseline machines 
 
This section describes the stack virtual machine 
used in the experiment.  The virtual machine is 
byte-coded and has the following instructions: 
 
zero argument 
arithmetic and logic 
add, sub, mul, div, and, or, not,
eq, lt, gt
ldi, sti ;;load/store indirect
ret ;;return from call



 
one argument 
varible access 
get x, put x, ld y, st y ;; access
to local (x) and global (y)
variables
control flow 
jmp a, jtrue a, jfalse a, call
a ;; a is address
 
and few other instructions to support machine 
execution and OS calls.  An argument is 16-bit 
except local variable access which is 8-bit.  A 
small benchmark suite to test  integer 
instructions [8] is used to collect statistic of 
behaviour of code execution.  The benchmark 
suite consists of seven programs (Table 1). 
 
program     aim      description     input 
 
sieve  test normal loop.  Sieve prime number, the 
method of Erathothenes, find the prime <= 100 
hanoi   test recursion.  Move 6 disks from peg 1 
to peg 3. 
matmul    test loop and arithmetic.  multiply 4 
by 4 matrix, C = A * B 
bubble      test loop and swap.  bubble sort, input 
data 20..1 
qsort   test loop and recursion.  quick sort, input 
data 20..1 
perm  test recursion.  Permutation generator.  
permute 4 numbers  0 1 2 3 
queen    test loop and index. find all solutions of 
8-queen problem encoding the solution as 
column position  {0,1,2,3,4,5,6,7} 
 
Table 1  the benchmark suite and its input.  The 
static size of all programs and the dynamic size of 
executing these programs are collected and are used to 
compare with the proposed code compression method. 
 
Experiment 
 
Profiling the benchmark suite results in the 
following general observation: 
� the top 10 most often used instruction 

consumes 88% of instruction bandwidth 
(Table 2). 

� the most often used instruction is "get" (load 
local variables to stack) and its argument is 
1..4 

� the literal 0 and literal 1 constitute almost 
100% of all literals executed. 

 
get 30.5
ld 10.1
add 9.8
lit 8.1
call 7.8
ret 7.8
lt 3.6
jfalse 3.4
put 3.3
ldi 3.2

 
Table 2  the top 10 most often used instructions 
(percent) 
 
Nibble coding 
 
A code sequence can be compressed in many 
ways. However, various methods to compress 
the code interact with each other, for example, 
the expression  if x < 0 is translated into the 
sequence   get x, lit 0, lt, jfalse a1.  
One can decide to use an extended code jump-
if-not-less-than-0 to replace the last three  
instructions, or the 2-combination less-than-0 
to compress lit 0 + lt, or the 2-combination 
jump-if-not-less-than to replace lt +

jfalse.  Choosing one of these will exclude the 
other choice.  The nibble coding takes the 
highest priority in the design decision as we 
believe it will have the highest compression gain 
in overall. 
 
The constraints in code compression are as 
follows:  
� as the byte-code is used the natural 

boundary for accessing a code is a byte, the 
encoding of code compression will follow 
this byte addressing, 

� sequence of code in consideration is in a 
basic block, although compressing 
combination across jump is possible, it is 
not attempted. 

 
Using 8-bit for an instruction, the instruction 
space is 256 instructions.  The first half is 
allocated to normal instructions and special 
instructions.  The second half is reserved for 
nibble coding.  There is 7-bit space of which will 
be divided into 3 and 4-bit for the first nibble and 
the second nibble following the observation from 
the code execution profile that the leading 
instruction of 2-combination is more constrained 
than the followed instruction.  The basic block 
constraints that the leading instruction can not be 
the control flow: jmp, jtrue, jfalse,

call, ret.  Other constraint is that instructions 



in the nibble can not both have arguments at the 
same time otherwise argument encoding will be 
complicated and will not be compact.  To 
consider the selection of instruction of nibble 
coding, the lead and follow instructions will be 
considered separately. 
 
Before deciding about the instruction selection 
for nibble coding the extended instructions are 
applied first as they maximally compress the 
size.  The choice of incrementing and 
decrementing a local variable is obvious one as 
they are used in looping construct in most 
program (while, for).  
 
get x, lit 1, add, put x => inc x
get x, lit 1, sub, put x => dec x
 
The instructions with arguments will be 
considered next to be combined to reduce their 
occurrence before nibble coding.  The control 
flow instructions especially conditional jump are 
good candidates. The conditionals are: eq, lt,
gt and the jumps are: jtrue, jfalse.  
These five instructions in combination cover all 
cases of conditional jump. 
 
eq jtrue => jeq ;; jump if equal 
eq jfalse => jne ;; jump if not equal 
lt jtrue => jlt ;; jump if less than 
lt jfalse => jge   ;; jump if greater than 
or equal 
gt jtrue => jgt ;; jump if greater than 
gt jfalse => jle ;; jump if less than or 
equal 
 
Using the same reason of reducing the 
instruction with argument, literal 0 and literal 1 
are considered for combining with other 
instructions.  The top five 2-combination code 
with lit0/lit1 are (from most frequent) 
{ lit/add, lit/ret, lit/jmp, lit/sub,

lit/eq }.  Their combination result in {add1,
ret0, ret1, 0jmp, 1jmp, sub1, eq0,

eq1} extended instructions.  After applying the 
above extended instructions the legal lead 
instructions of the rest of the 2-combination code 
are found to be { get, ld, add, ldi, put,

sub, sti}.  From this set 8 intructions are 
chosen according to their frequency of use 
{ get1, get2, get3, get4, ld, add,

ldi, sti }.  The follow set can have 16 
instructions and the choice is the lead set plus 
{ ret, sub1, add1, sub, mul, st,

call }  

(ordered by the frequency of use).  The rule for 
combining the instruction is if the lead is "ld" 
then the follow must not be "ld" or "st" or 
"call" as only one argument is allowed in 
nibble coding.  The argument is the index into 
the literal table.  Some combination has zero 
argument.   
 
Instruction encoding 
 
The instructions are 8-bit.  To maximise the size 
of index to the literal table the argument is 10-bit 
with 2-bit embed into the instruction.  The 
normal and extended instructions occupy the first 
half of instruction space and are begun with a bit 
0.  The second half is for nibble code.  The 
nibble code starts with a bit 1, the next 3-bit 
specifies the lead instruction, the last 4-bit 
specifies the follow instruction.  If the instruction 
has argument (the ld, st, call instruction) 
then the nibble has one byte argument.  (Fig 1) 
 
normal and extended  
0|op:7   ;; zero argument 
0|op:7 a2:8 ;; local: get, put, inc, dec 
0|op:5|a1:2  a2:8 ;; jmps, call, ld, st 
 
nibble 
1|op1:3|op2:4      ;; zero argument 
1|op1:3|op2:4 a2:8    ;; one argument 
 
Figure 1 Instruction encoding of the proposed 
scheme 
 
A number of highly frequently used instructions 
are specialised to eliminate their arguments.  
They are {get1, get2, get3, get4,

put1, put2, put3, put4, lit0, lit1}.  
Some of them will escape the code compression 
process and will use this final-catch 
compression. 
 
Result and discussion 
 
Table 3 shows all the raw data on static and 
dynamic measures of the execution of 
benchmark programs. Figure 2 shows the 
improvement of code size reduction using the 
calculation 1-A/B. 
 
From Fig. 2, encoding arguments from 16-bit 
into 8-bit index into the literal table alone 
reduces the code size both static and dynamic in 
average 38% (e/base).  Using extended 
instructions contributes 9% and 12% in static 
and dynamic code size reduction (ex/e).  The 



nibble coding affects 11% and 22% of further 
static and dynamic code size reduction (exn/ex).  
The combined effect of all methods is 50% and 
57% of static and dynamic code size reduction 
(exn/base).  In other words, using the proposed 
method the static code size is half of the base 
size and the dynamic code size is less than half 
of the base size.  Comparing with a typical 32-bit 
3-address machine code of a load/store register 
processor, S2 [9], the proposed method achieves 
the static code size of 74% less and the dynamic 
code size of 70% less than S2 (exn/S2).   
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 bubble hanoi matmul perm queen quick sieve 
static        
base 283 226 417 265 519 452 346 
e 178 139 257 168 324 278 214 
ex 162 133 230 154 296 246 196 
exn 143 117 199 138 258 219 179 
S2  596 400 892 444 1080 828 680  
 
       
dynamic     x100   
base 40195 7203 6279 17428 32341 16096 12739 
e 25493 4432 4031 10957 20376 9892 7829 
ex 22861 4024 3628 9583 18321 8500 6703 
exn 17189 2913 2705 7738 14954 6995 5344 
S2  59444 14548 13752 24984 34216 19904 18288 

 
Table 3  Statistics on the size of code (in bytes) on benchmark execution of several code compression methods.  base 
= baseline byte-code encoding, e = compact encoding with literal table, ex = e + extended instructions, exn = ex + 
nibble coding, S2 = typical 32-bit 3-address machine code. 

 
 
Figure 2 Percent of static (top)  and dynamic code size reduction (bottom) of several code compression methods.  
base = baseline byte-code encoding, e = compact encoding with literal table, ex = e + extended instructions, exn = ex + 
nibble coding, S2 = typical 32-bit 3-address machine code. 
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