
Instruction compression by nibble coding: war on the old front.

Prabhas Chongstitvatana and Vishnu Kotrajaras

Department of computer engineering
Chulalongkorn University

Thailand
prabhas@chula.ac.th

Abstract

This work describes a new investigation of the
problem of instruction set design: How to make
the program as small as possible. The proposed
method, called "nibble coding", compresses two
instructions into one byte. The experiment is
carried out to compare conventional byte-code
instruction and a typical 32-bit machine code
with the nibble coding. The result shows the
proposed scheme achieves a smaller instruction
bandwidth than a byte-code virtual machine and
is much smaller than the conventional executable
machine code.

Introduction

In the last decade the progress of microprocessor
design has been phenomenal. Performance
improvement rises according to Moore's law.
The performance is double every 18 months.
With this progress, there emerges strong leader
of the manufacturers. The market competition
forces the architecture to slowly converge.
Instruction Set Architecture (ISA) has become
not as important issue as the previous decade
where the market was still young. Drive for
performance is the key for the progress of the
last decade. However, the new applications have
shifted the design landscape once again to low
power, portable devices [1]. The technology for
implementing computational devices in small
batch with fast turnaround time has opened up
the issue of ISA design.

For some very small devices, the instruction
storage can be critical. This work describes a
new investigation of the old problem: How to
make the instruction (program) as small as
possible. We experimented with instruction
encoding and proposed to compress two
instructions into one byte. This scheme is called
"nibble coding". The investigation is carried out
to compare the instruction bandwidth using the
measure of dynamic instruction count on a small
suite of benchmark programs. The result shows

that this scheme achieves a much smaller code
size. Reducing the size of machine code has
benefit in two aspects. The first one is obvious
in reducing the storage requirement, both in code
segment and in instruction cache memory. This
is often the reason behind many classic
instruction set architecture, to achieve very
compact executable code. The second one is
related to power requirement. As the instruction
bandwidth is reduced, the power consumption is
also reduced [2, 3].

Stack machines

Conventional machine code is not the most
compact form to represent an executable code.
The intermediate code for a virtual machine is
usually much smaller because of its higher
semantic content. One of the most popular form
of intermediate code is based on stack
addressing. A stack machine code is very
compact due to its use of stack which oes not
required addressing bit. Majority of instructions
thus do not required the operand in the
instruction as it is implicit in the stack. Basically
the stack instruction has two forms: zero
argument and one argument. All arithmetic and
logic instructions are zero argument. The
jump/call load/store instructions have one
argument, the address of jump or the data
memory. The most well-known stack virtual
machine is Java Virtual Machine (JVM) [4] as it
is embedded into most browser. Its machine
code is called byte-code. As the name implied,
the format of code is byte oriented where most
instruction is one byte.

Code compression

There are a number of work in code compression
[5, 6]. This work differs in that it is concentrated
on the virtual machine code. The method to
pack instructions into a smaller space in this
work is based on the following techniques:

1. Extended instruction, making a special
instruction that replace several simple
instructions.

2. Specialization, eliminate argument by
making an instruction special to a particular
argument thus reduce the size of instruction.

3. Reduce the size of argument, by using a
literal table that store a number of full-size
arguments. The argument of the instruction
can be replaced by the index into this table.
The index is much smaller than full-range of
argument as there are small finite number of
different variables in a program.

4. Packing two instructions into one
instruction, this technique is called "nibble
coding". This is the main contribution of
this work.

Extending instruction set is a very powerful
method and has potential to reduce the size of
code beyond what achievable by other methods.
It has been explored in our previous work [7].
For example, the expression i = i + 1 which
can be translated into the following sequence of
stack code: address of i, value of i,

literal 1, plus, store, totally five
instructions can be replaced by one special
instruction: increment i. However, beside
some obvious idiom, selection of special
instructions faces combinatorial explosion as the
combination of code grows very fast with the
length of sequence. Another limitation of this
technique is that except combination of length
two, it is applicable only to a small percentage of
the whole program. In this study we measured
the use of this technique and found that it
contributes only 10% of the code size reduction
both in static measure and in dynamic measure.
By static measure, we mean the size of the
program. By dynamic measure we mean the
counting of the number of byte of executed
instructions, this measures the instruction
bandwidth.

To specialize instructions the frequency of use of
each instruction including its argument is
measured. A number of most often used
instructions are then made into special
instructions with no argument. This method
eliminate the space to store argument
completely.

Using a table to store literals in a program can
save large amount of bit in instructions that are
required to store full-size literals such as the
address of a variable. An index into this table is

used as argument instead. The size of this index
depends on the size of the table. A careful
judgement is required to balance the size of the
table to cover large number of literals appeared
in a program without making the size of index
too large.

Nibble coding is the main technique to encode
two instructions into one. The instruction space
is divided into normal instructions and packed
instructions. For example for byte-code format
the normal instructions occupies half of 256
instructions and the rest is for packed
instructions. The space for instruction encoding
is limited to half length of the normal instruction,
for example 7 bits is remained to pack two
instructions in the byte-code format. The choice
of two-instruction combination is based on:
� the frequency of use, by compacting the

most used combination, the impact in
dynamic code compression is maximised.

� the frequency of occurrence, the
combination that appears most frequently in
the program will reduce the static code size.

The nibble coding can be designed to be
orthogonal, that is, it can be full combination of
the selected instructions. In this aspect, it can be
applied to a large percentage of code sequence.
This is in contrast to the extended instruction
concept mentioned previously. The result of this
technique can achieve 50% code size reduction
in average when the selection of instruction
covers the program well.

To investigate the idea, the experiment of
application of these techniques is carried out
using a stack virtual machine. Various effects
are measured to acertain their actual contribution
to code compression. The detail of which will be
describe in the next section.

Baseline machines

This section describes the stack virtual machine
used in the experiment. The virtual machine is
byte-coded and has the following instructions:

zero argument
arithmetic and logic
add, sub, mul, div, and, or, not,
eq, lt, gt
ldi, sti ;;load/store indirect
ret ;;return from call

one argument
varible access
get x, put x, ld y, st y ;; access
to local (x) and global (y)
variables
control flow
jmp a, jtrue a, jfalse a, call
a ;; a is address

and few other instructions to support machine
execution and OS calls. An argument is 16-bit
except local variable access which is 8-bit. A
small benchmark suite to test integer
instructions [8] is used to collect statistic of
behaviour of code execution. The benchmark
suite consists of seven programs (Table 1).

program aim description input

sieve test normal loop. Sieve prime number, the
method of Erathothenes, find the prime <= 100
hanoi test recursion. Move 6 disks from peg 1
to peg 3.
matmul test loop and arithmetic. multiply 4
by 4 matrix, C = A * B
bubble test loop and swap. bubble sort, input
data 20..1
qsort test loop and recursion. quick sort, input
data 20..1
perm test recursion. Permutation generator.
permute 4 numbers 0 1 2 3
queen test loop and index. find all solutions of
8-queen problem encoding the solution as
column position {0,1,2,3,4,5,6,7}

Table 1 the benchmark suite and its input. The
static size of all programs and the dynamic size of
executing these programs are collected and are used to
compare with the proposed code compression method.

Experiment

Profiling the benchmark suite results in the
following general observation:
� the top 10 most often used instruction

consumes 88% of instruction bandwidth
(Table 2).

� the most often used instruction is "get" (load
local variables to stack) and its argument is
1..4

� the literal 0 and literal 1 constitute almost
100% of all literals executed.

get 30.5
ld 10.1
add 9.8
lit 8.1
call 7.8
ret 7.8
lt 3.6
jfalse 3.4
put 3.3
ldi 3.2

Table 2 the top 10 most often used instructions
(percent)

Nibble coding

A code sequence can be compressed in many
ways. However, various methods to compress
the code interact with each other, for example,
the expression if x < 0 is translated into the
sequence get x, lit 0, lt, jfalse a1.
One can decide to use an extended code jump-
if-not-less-than-0 to replace the last three
instructions, or the 2-combination less-than-0
to compress lit 0 + lt, or the 2-combination
jump-if-not-less-than to replace lt +

jfalse. Choosing one of these will exclude the
other choice. The nibble coding takes the
highest priority in the design decision as we
believe it will have the highest compression gain
in overall.

The constraints in code compression are as
follows:
� as the byte-code is used the natural

boundary for accessing a code is a byte, the
encoding of code compression will follow
this byte addressing,

� sequence of code in consideration is in a
basic block, although compressing
combination across jump is possible, it is
not attempted.

Using 8-bit for an instruction, the instruction
space is 256 instructions. The first half is
allocated to normal instructions and special
instructions. The second half is reserved for
nibble coding. There is 7-bit space of which will
be divided into 3 and 4-bit for the first nibble and
the second nibble following the observation from
the code execution profile that the leading
instruction of 2-combination is more constrained
than the followed instruction. The basic block
constraints that the leading instruction can not be
the control flow: jmp, jtrue, jfalse,

call, ret. Other constraint is that instructions

in the nibble can not both have arguments at the
same time otherwise argument encoding will be
complicated and will not be compact. To
consider the selection of instruction of nibble
coding, the lead and follow instructions will be
considered separately.

Before deciding about the instruction selection
for nibble coding the extended instructions are
applied first as they maximally compress the
size. The choice of incrementing and
decrementing a local variable is obvious one as
they are used in looping construct in most
program (while, for).

get x, lit 1, add, put x => inc x
get x, lit 1, sub, put x => dec x

The instructions with arguments will be
considered next to be combined to reduce their
occurrence before nibble coding. The control
flow instructions especially conditional jump are
good candidates. The conditionals are: eq, lt,
gt and the jumps are: jtrue, jfalse.
These five instructions in combination cover all
cases of conditional jump.

eq jtrue => jeq ;; jump if equal
eq jfalse => jne ;; jump if not equal
lt jtrue => jlt ;; jump if less than
lt jfalse => jge ;; jump if greater than
or equal
gt jtrue => jgt ;; jump if greater than
gt jfalse => jle ;; jump if less than or
equal

Using the same reason of reducing the
instruction with argument, literal 0 and literal 1
are considered for combining with other
instructions. The top five 2-combination code
with lit0/lit1 are (from most frequent)
{ lit/add, lit/ret, lit/jmp, lit/sub,

lit/eq }. Their combination result in {add1,
ret0, ret1, 0jmp, 1jmp, sub1, eq0,

eq1} extended instructions. After applying the
above extended instructions the legal lead
instructions of the rest of the 2-combination code
are found to be { get, ld, add, ldi, put,

sub, sti}. From this set 8 intructions are
chosen according to their frequency of use
{ get1, get2, get3, get4, ld, add,

ldi, sti }. The follow set can have 16
instructions and the choice is the lead set plus
{ ret, sub1, add1, sub, mul, st,

call }

(ordered by the frequency of use). The rule for
combining the instruction is if the lead is "ld"
then the follow must not be "ld" or "st" or
"call" as only one argument is allowed in
nibble coding. The argument is the index into
the literal table. Some combination has zero
argument.

Instruction encoding

The instructions are 8-bit. To maximise the size
of index to the literal table the argument is 10-bit
with 2-bit embed into the instruction. The
normal and extended instructions occupy the first
half of instruction space and are begun with a bit
0. The second half is for nibble code. The
nibble code starts with a bit 1, the next 3-bit
specifies the lead instruction, the last 4-bit
specifies the follow instruction. If the instruction
has argument (the ld, st, call instruction)
then the nibble has one byte argument. (Fig 1)

normal and extended
0|op:7 ;; zero argument
0|op:7 a2:8 ;; local: get, put, inc, dec
0|op:5|a1:2 a2:8 ;; jmps, call, ld, st

nibble
1|op1:3|op2:4 ;; zero argument
1|op1:3|op2:4 a2:8 ;; one argument

Figure 1 Instruction encoding of the proposed
scheme

A number of highly frequently used instructions
are specialised to eliminate their arguments.
They are {get1, get2, get3, get4,

put1, put2, put3, put4, lit0, lit1}.
Some of them will escape the code compression
process and will use this final-catch
compression.

Result and discussion

Table 3 shows all the raw data on static and
dynamic measures of the execution of
benchmark programs. Figure 2 shows the
improvement of code size reduction using the
calculation 1-A/B.

From Fig. 2, encoding arguments from 16-bit
into 8-bit index into the literal table alone
reduces the code size both static and dynamic in
average 38% (e/base). Using extended
instructions contributes 9% and 12% in static
and dynamic code size reduction (ex/e). The

nibble coding affects 11% and 22% of further
static and dynamic code size reduction (exn/ex).
The combined effect of all methods is 50% and
57% of static and dynamic code size reduction
(exn/base). In other words, using the proposed
method the static code size is half of the base
size and the dynamic code size is less than half
of the base size. Comparing with a typical 32-bit
3-address machine code of a load/store register
processor, S2 [9], the proposed method achieves
the static code size of 74% less and the dynamic
code size of 70% less than S2 (exn/S2).

References

[1] C. Kozyrakis and D. Patterson, "A new

direction for computer architecture
research", IEEE computer, Nov. 1998,
pp.24-32.

[2] R. Gonzalez, Low-power processor
design,Technical Report No. CSL-TR-97-
726, June 1997, Computer Systems
Laboratory Departments of Electrical
Engineering and Computer Science,
Stanford University.

[3] R. Krishnamurthy, Mixed Swing
Techniques for Low Energy/Operation
Datapath Circuits, PhD thesis, Electrical
and Computer Engineering, Carnegie
Mellon University, December 1997.

[4] B. Joy (Ed), G. Steele, J. Gosling, G.
Bracha, Java(TM) Language Specification
(2nd Ed), Addison Wesley Pub., 2000.

[5] K. Cooper and N. McIntosh, Enhanced
code compression for embedded RISC
processors, Proc. ACM SIGPLAN '99
Conf. on Programming language design
and implementation, May 1-4, 1999,
Atlanta, GA, pp.139-149.

[6] H. Lekatsas, J. Henkel, W. Wolf, Code
Compression for Low Power Embedded
System Design, Proc. of the 37th Conf. on
Design automation, June 5 - 9, 2000, Los
Angeles, CA USA.

[7] P. Chongstitvatana, "Post processing
optimization of byte-code instructions by
extension of its virtual machine", 20th
Electrical Engineering Conference,
Thailand, 1997.

[8] J. Hennessy and P. Nye, "Stanford Integer
Benchmarks", Stanford University.

[9] P. Chongstitvatana, "S2 processor and its
opcode format",
http://ww.cp.eng.chula.ac.th/
faculty/pjw/teaching/ads

 bubble hanoi matmul perm queen quick sieve
static
base 283 226 417 265 519 452 346
e 178 139 257 168 324 278 214
ex 162 133 230 154 296 246 196
exn 143 117 199 138 258 219 179
S2 596 400 892 444 1080 828 680

dynamic x100
base 40195 7203 6279 17428 32341 16096 12739
e 25493 4432 4031 10957 20376 9892 7829
ex 22861 4024 3628 9583 18321 8500 6703
exn 17189 2913 2705 7738 14954 6995 5344
S2 59444 14548 13752 24984 34216 19904 18288

Table 3 Statistics on the size of code (in bytes) on benchmark execution of several code compression methods. base
= baseline byte-code encoding, e = compact encoding with literal table, ex = e + extended instructions, exn = ex +
nibble coding, S2 = typical 32-bit 3-address machine code.

Figure 2 Percent of static (top) and dynamic code size reduction (bottom) of several code compression methods.
base = baseline byte-code encoding, e = compact encoding with literal table, ex = e + extended instructions, exn = ex +
nibble coding, S2 = typical 32-bit 3-address machine code.

0

10

20

30

40

50

60

bubble hanoi matmul perm queen quick sieve

e/base
ex/e
exn/ex
exn/base

0

10

20

30

40

50

60

70

bubble hanoi matmul perm queen quick sieve

e/base
ex/e
exn/ex
exn/base

