
RTL Formal Verification of Embedded Processors

P. Bavonparadon and P. Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Phayathai road, Bangkok, 10330, THAILAND

E-mail: prapon.b@student.chula.ac.th, prabhas@chula.ac.th

Abstract
This paper presents a technique for formal verification of
processors. The verification process is performed at the
RTL level of implementation, which has the advantage
of being synthesizable by a synthesis tool. Cadence
SMV is used as the verification tool. It employs the
symbolic model checking technique. A stepwise
verification method is proposed where the details of
design are increased in each step. This method facilitates
the error finding process. The proposed technique can
reduce the complexity of the verification process and
enables it to be completed in a reasonable time. The
technique is illustrated on a simple processor used in an
embedded web server. The design is verified
successfully.
Keywords: Formal Verification, RTL (Register Transfer
Level), Cadence SMV, Processor Verification, Symbolic
Model Checking, Stepwise Verification Method

1. Introduction
This paper presents a formal verification of a processor,
which is designed for an embedded web server [1]. The
verification process is applied to the implementation of
the processor at RTL (Register Transfer Level). The
RTL implementation can be synthesized by synthesis
tools. This makes the method suitable for practical use.
Cadence SMV [2] is used as a verification tool. This tool
is based on symbolic model checking [3,4] which is a
technique in model-based verification [5].

In recent years, there are many applications of formal
verification for processor validation such as
[6,7,8,9,10,11]. Many works verify the commercial
processors [6,7,8]. Proof-theoretic approaches [5] are the
most popular techniques for verifying processors
[8,9,10,11] as they are suitable for verifying large
circuits. However, these approaches have some
drawbacks. It requires mathematical expertise and it is
not yet easy to automate. Therefore, these approaches are
only used in research or in companies which have expert
formal verification team. In addition, many works on
processor verification do not verify a whole processor
but they verify only some parts [6,9,11]. This is because
the size of the whole processor in full details is too large
to be verifiable.

Other approaches are model-based approaches. These
approaches are often used to verify control circuits
[12,13,14], protocols [15], and asynchronous control
circuits [16]. Although there is an application of these
approaches for verifying processors [17] but it is the
verification at behavior level. There are only a few

research that apply model-based approaches to verify
processors and there are only few works which verify a
whole processor. There is no research that uses model-
based approaches to verify processors at RTL because it
has too many details.

This paper uses symbolic model checking technique
to verify the processor at RTL level. This design level
has sufficient detail for synthesizing a real chip. The
advantage of this technique is that it is highly automated
hence it does not require a mathematician to perform the
verification. Therefore, small group of researchers or
small size companies can apply this technique in their
verification process. This paper proposes the stepwise
verification that divides the verification process into
many steps. The first step has the least detail and the last
step has the most detail. This method makes the error
finding easier. Some abstraction techniques which speed
up the verification process are also presented.

The rest of this paper is organized as follows. Section
2 introduces symbolic model checking technique.
Section 3 describes the processor. Section 4 presents the
detail of formal verification of the processor. Section 5
concludes the paper.

2. Symbolic Model Checking
Symbolic Model Checking [3,4] is a technique belongs
to model-based approaches. This technique is suitable
for verifying finite state systems. The task of symbolic
model checking can be broken down into three phases:
modeling, specification, and verification. The first task is
to represent system under consideration in a precise
model that can be accepted by a model checking tool.
Often we need to use abstraction to eliminate irrelevant
or unimportant details from the design to reduce the
amount of resource required by the verification tool.

Cadence SMV (Cadence Symbolic Model Verifier)
[2] is used. It is a symbolic model checking tool based
on binary decision diagram (BDD) [18]. This tool
accepts SMV language which is designed for the
verification task. SMV language is similar to a hardware
description language so it suits for representing hardware
circuits. This language can express the specification in a
temporal logic Computation Tree Logic (CTL) [19].
CTL is used to express temporal properties such as the
absence of deadlock etc. Cadence SMV tool creates state
transition graphs from SMV language source codes. It
uses binary decision diagram to represent state transition
relations and performs the verification process by using
these relations. The use of binary decision diagram is an

important factor in the success of symbolic model
checking technique.

The second task is to write the specification using
CTL. The CTL properties are composed of atomic
propositions, boolean connectives, and temporal
operators. Atomic propositions are used to represent
state variables in the system. Boolean connectives
consist of conjunction operators (∧), disjunction
operators (∨), and negation operators (¬). Temporal
operators are path qualifiers (A or E) and temporal
modalities (F, G, X, or U). Path qualifiers define that the
property should be true for all execution paths or some
execution paths. Temporal modalities specify the
sequence of events on the execution path. Each temporal
modalities have specific meaning as follows:

1. F ϕ (“ϕ holds sometime in the future”) is true of a
path if there exits a state on the path for which the
formula ϕ is true.

2. G ϕ (“ϕ holds globally”) means that ϕ is true at
every state on the path.

3. X ϕ (“ϕ hold in the next state”) means that ϕ is true
in the second state on the path.

4. ϕ U ψ (“ϕ holds until ψ holds”) means that there
exists some state on the path for which is ψ true, and
for all states preceding this one, ϕ is true.

An atomic proposition is true when the corresponded
state variables have suitable values. The truth values of
propositions connected by boolean operators depend on
the truth value of each atomic proposition. The
propositions with universal path quantifiers (A) are true
when the properties are true for all execution paths. The
propositions with existential path quantifier (E) are true
when the properties are true for some execution paths.
Furthermore, the properties of verified system are true
when these properties are true for all initial states. The
examples below are some examples of CTL, which show
the expressiveness of this logic.

• AG(Reg → AF Ack): it is always the case that if the
signal Reg is true, then eventually Ack will also be
true.

• AG AF DeviceEnabled: DeviceEnabled holds
infinitely often on every computation path.

• AG EF Restart: from any state, it is possible to get
to the Restart state.

• AG(Send → A(Send U Recv)): if Send holds, then
eventually Recv is true, and until that time, Send
remains true.

The third task is verification (after modeling and
specification). The verification process is fully
automatic. When some properties are false, Cadence
SMV tool will produce the counterexamples of the
problem cases. These counterexamples can be used to
find sources of the errors.

3. Embedded Processors
The processor verified in this paper is designed for an
embedded web server [1]. This processor is sufficiently

small and can be used in remote control systems via
Internet. It is a 16-bit load/store architecture that the
computation performs only with the registers and there
are only load and store instructions which can
communicate to the memory. The memory address bus
and memory data bus are 16-bit wide. The program
memory and data memory are separated.

Figure 1 shows the datapath of the processor. This
processor does not use pipeline and does not support
interruption signals. The processor is designed at RTL
level. It has sufficient detail of the processor such as
transitions of the internal control signals and internal
structure of the processor etc. The design is written in
Verilog hardware description language. The instructions
of this processor is divided into 3 groups: computation
instructions, jump instructions, and load/store
instructions. There are four 16-bit registers and two
flags: carry and zero. Table 1 shows instruction set of
this processor.

4. Processor Verification
The verification in this paper, means the refinement
verification [2] that verifies the functional equivalence
between the implementation and the specification. It
verified that the important signals of the implementation
have the same values as the corresponding signals of the
specification. The refinement verification can be
performed using both simulation method and formal
verification. However, formal verification can guarantee
the correctness of verification result better than
simulation method.

The verification is divided into several incremental
steps, where the details of the processor are increased at
each step. The first step has the least detail and the last
step has a full detail. Each step contains only the
necessary detail for verifying the goal of that step. This
stepwise technique also helps in locating and correcting
the errors in the design that are discovered during the
verification process.

The verification process is composed of the
following steps:
1. Verify that the processor fetches instructions from

the program memory correctly. The verification goal
of this step is that the value of IR (Instruction
Register) in the specification and the
implementation are the same.

2. Verify that the value of opcode is correct. This
signal is the output of uninterpreted function. This
function defines the relation between IR and opcode.
The detail of uninterpreted function is described in
Section 4.2.

3. Verify that the values of registers in the register file
are correct (there are 4 registers) and verify that the
values of flags are correct (carry flag and zero flag).
This step verifies only computation instructions.

4. Verify that the value of PC (Program Counter) is
correct. This step verifies jump instructions.

5. Verify that the values of registers in the register file,
flags, and PC are correct. This step verifies
load/store instructions.

Figure 1. Datapath of the processor

 Table 1. Instruction set of the processor
(r = register[A,B,T,SP], i = immediate, ad = address)

Instruction Description
ADD r [r] = [r] + [T]
ADDI r, i [r] = [r] + immediate
SUB r [r] = [r] - [T]
SUBI r, i [r] = [r] - immediate
AND r [r] = [r] & [T]
ANDI r, i [r] = [r] & immediate
ORR r [r] = [r] | [T]
ORRI r, i [r] = [r] | immediate
XOR r [r] = [r] ^ [T]
XORI r, i [r] = [r] ^ immediate
COM r [r] = ~[r]
ROL r Rotate left [r] by c flag
ROR r Rotate right [r] by c flag
NOP No Operation

Instruction Description
LUI r Load upper immediate to [r]
CLC Clear carry flag
STC Set carry flag
JNZ ad Jump if not zero
JNC ad Jump if not carry
JMP ad Unconditional jump
LDB r Load from mem[B] to [r]
LDS r Load from mem[SP] to [r]
STB Store [T] to mem[B]
STS Store [T] to mem[SP]
LPC Load from mem[SP] to [PC]
SPC Store [PC] to mem[SP]
R2T r Move [r] to [T]

6. Verify that the values of registers in the register file,
flags, and PC are correct. This step verifies every
instructions.

4.1 Specification and Implementation of Processor
The specification of the processor is written in SMV
language. This specification describes the instruction set
architecture (ISA) of the processor. It is a behavioral
level description of the processor. It describes a
sequential circuit and its signals such as IR, PC, register
file, flags, RAM, and ROM etc. The state transition
function of the specification has the same transition as
the control unit of the implementation. The specification

and the implementation will start and finish the
execution of every instruction in sync. For this reason, it
is possible to compare the value of signals in the
specification and the implementation. The
implementation is also written in SMV language. It
describes the detail of the processor designed at RTL.
The SMV language implementation has the same
module and hierarchy of the processor as in the Verilog
implementation.

Figure 2 shows some part of datapath with respect to
IR. From this figure PC value becomes the address of
ROM. The data port of ROM connects with the input of
IR. In the fetch state IR will save the present instruction

IR

Register
File

ALU

C Z

PC DecoderPC

Sign
Extension

opcode

mem_sel1
d_data_out

op_sel

pc_load
pc_sel pc_sel1

mem_sel

opcode

ir_load

reg_load

ld_sel

reg_sel

offset

Data
Bus

Address Bus

Instruction
Address

Instruction CodeData Bus

immediate

16

16

16

16

11

8a_out

b_out

16

16

from ROM following the clock that control signals set to
active.

This is an example of the SMV source code of the
specification and the implementation. In the state that
fetches an instruction from ROM (program memory) the
code of the specification is:

next(ir_ab) := rom_mem_ab[pc_ab];

The IR value is assigned with ROM data, and the
address of ROM is equal to PC value. The
implementation code is:

prog_en:=0; ir_ld:=1;

The prog_en is a chip enable signal of ROM. In the
other states its value is '1' (disable ROM) but in this state
its value is '0' (enable ROM). The ir_ld is the load signal
of IR module in this state its value is '1' (load to IR). This
example shows that the behavior model of specification
is more understandable than the RTL model of
implementation.

Figure 2. Some part of datapath with respect to IR

4.2 Abstraction Technique in Specification and
Implementation

By the nature of symbolic model checking technique, it
has state explosion problem. The execution time and
memory used in the verification process increase
exponentially with the complexity of the verified system.
Therefore, some abstraction techniques must be used to
reduce the complexity of the processor. These
abstractions are:

Uninterpreted function: To reduce the complexity,
the detail of combinational logic is not verified.
Uninterpreted functions [2] are used to represent this
detail. Uninterpreted functions are multi-dimension
arrays that are not initialized. Any function value can be
assigned to uninterpreted functions. The combinational
logic circuits represented by uninterpreted functions are
arithmetic logic unit (ALU) and adder circuit for PC. In
addition, uninterpreted functions are used for defining
the relations between IR and many signals such as
opcode, inst_mode (instruction mode), rs (source and
destination register) and imm (immediate value) because
the actual data width has been abstracted away.

Furthermore, the specification and the implementation
use the same uninterpreted function.

Data size reduction: The data size is abstracted to 1
bit to reduce the number of possible states. The use of
uninterpreted functions is appropriate as it is necessary
to consider only that the data in the specification and the
implementation are the same or not.

Not verify the effect of carry flag to ALU: The
uninterpreted function representing ALU depends on
both the input of ALU and the carry flag. The possible
state is too large for the tool to handle. By omitting the
carry flag, 24 state variables can be eliminated. The
possible state is reduced 224 times. This allows the tool to
verify the whole design successfully. In addition, the
connection line between the carry flag and ALU can be
verified by simulation method later, because the possible
state of this line is small.

4.3 The Detail of Verification
Figure 3 shows a part of SMV language source code
which define the relations between signals in the
specification and the implementation. These assertion
are automatically converted to CTL by Cadence SMV
tool. These assertions are:

1. The lemma1 declares that IR value of the
implementation (ir_out) must equal to IR value of
the specification (ir_ab). This assertion must hold in
every state.

2. The lemma2 declares that opcode value of the
implementation (opcode) must equal to opcode
value of the specification (opcode_ab). This
assertion must hold in every state.

3. The lemma3 declares that register values in the
register file of the implementation (regfile.ra,
regfile.rb, regfile.rsp, regfile.rt) must equal to
register values in the register file of the specification
(ra_ab, rb_ab, rsp_ab, rt_ab). This assertion holds
only in the FETCH0 state, which the processor
fetches a new instruction from program memory. In
this state, the results of last instruction were stored
and the processor did not start to execute a new
instruction.

4. The lemma4 declares that carry flag and zero flag of
the implementation (c, z) must equal to carry flag
and zero flag of the specification (c_ab, z_ab). This
assertion only holds in the FETCH0 state.

5. The lemma5 declares that PC value of the
implementation (pc_out) must equal to PC value of
the specification (pc_ab). This assertion must holds
in the FETCH0 state.

4.4 Verification Result
During the verification process, we discover an error in
the implementation of the processor. There is a mistake
in the COM (Complement) instruction. The specification
defines that this instruction affects value of the zero flag,
but the verification tool indicates that this instruction of
the implementation does not affect the zero flag. This
error has escaped the test by simulation method which
the processor has been subjected to extensively before
the formal verification.

rom_data

WORD
WORD

ir_out
IR

ir_ld

pc_out

WORD

PC

pc_ld

WORD

next_pc_1
. . .

ROM

prog_en

The Cadence SMV tool works on computer that uses
Linux operating system. It has Pentium III 1 GHz
processor and 2 Gbytes memory. The tool finishes
verification process in 30 minutes and uses memory
about 1 Gbytes.

layer lemma1:
ir_out := ir_ab;

layer lemma2:
opcode := opcode_ab;

layer lemma3:
if (pstate=ST_FETCH0) {

regfile.ra := ra_ab;
regfile.rb := rb_ab;
regfile.rsp := rsp_ab;
regfile.rt := rt_ab;

}
layer lemma4:

if (pstate=ST_FETCH0) {
c := c_ab;
z := z_ab;

}
layer lemma5:

if (pstate=ST_FETCH0)
pc_out := pc_ab;

Figure 3. The relation between the implementation and
the specification

5. Conclusion
This work shows the application of formal verification to
verify the processor designed for an embedded web
server. The verification performs at the level of RTL
which has the sufficient details for synthesizing to
physical circuits. Cadence SMV is used as the
verification tool. It is based on symbolic model checking
technique.

The verification of the implementation at RTL by
symbolic model checking technique has never been done
before because of the state explosion problem. This
paper presents many techniques to reduce the complexity
of the processor so that the verification process can be
completed. Furthermore, this paper proposes the
stepwise verification, which divides the verification
process into several incremental steps that details are
increased from the first step to the last step.

Some error has been detected which has not been
discovered by the previous test by simulation. It
demonstrates the application of formal verification to an
RTL implementation of processors. Because the
symbolic model checking method can be largely
automated, it is applicable to the real world industry.

The future work will be to create a tool for
translating an implementation in SMV language into
Verilog HDL that can be used for synthesizing circuits.
Another work is to create a tool for translating the
specification, which describes ISA, in SMV language
into a simulator program. These tools will allow the
formal verification process to be integrated into the
development cycle of real world applications.

6. Acknowledgement

Prapon Bavonparadon is supported by Chulalongkorn
University's scholarship given in H.M. King Rama IX
72nd Anniversary.

References
[1] K. Piromsopa, Development of A Reconfigurable

Embedded Web Server, Master Thesis,
Chulalongkorn University, 2000. (in Thai)

[2] K. L. McMillan, Getting started with SMV,
http://www-cad.eecs.berkeley.edu/~kenmcmil/
tutorial.ps, 1999.

[3] K. L. McMillan, Symbolic Model Checking, Ph.D.
Thesis, Carnegie Mellon University, 1992.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L.
Dill, L. J. Hwang, "Symbolic Model Checking:
10^20 states and beyond", Information and
Computation, Vol. 98, No. 2, June 1992, pp. 142--
170.

[5] T. Kropf, Introduction to Formal Hardware
Verification, Springer, 1999.

[6] A. Biere, E. Clarke, R. Raimi, and Y. Zhu,
"Verifying safety properties of a PowerPC
microprocessor using symbolic model checking
without BDDs", Proceedings of the 11th
International Conference on Computer Aided
Verification (CAV'99), 1999.

[7] D. P. Appenzeller, and A. Kuehlmann, "Formal
Verification of a PowerPC Microprocessor",
Proceedings of the International Conference on
Computer Design (ICCD'95), 1995.

[8] S. P. Miller, and M. Srivas, "Formal Verification of
the AAMP5 Microprocessor: A Case Study in the
Industrial Use of Formal Methods", Proceedings of
the Workshop on Industrial-Strength Formal
Specification Techniques (WIFT'95), 1995.

[9] R. Hosabettu, M. Srivas, and G. Gopalakrishnan,
"Proof of Correctness of a Processor with Reorder
Buffer using the Completion Functions Approach",
Proceedings of the 11th International Conference on
Computer Aided Verification (CAV'99), 1999.

[10]P. J. Windley, "Formal modeling and verification of
microprocessors", IEEE Transactions on Computers,
Vol. 44, No.1, January 1995, pp. 54--72.

[11] J. R. Burch, "Techniques for Verifying Superscalar
Microprocessors", Proceedings of the 33rd Design
Automation Conference (DAC'96), 1996.

[12]A. A. Mir, S. Balakrishnan, and S. Tahar, "Modeling
and Verification of Embedded Systems using
Cadence SMV", Proceedings of the 2000 Canadian
Conference on Electrical and Computer
Engineering, 2000.

[13]H. Choi, B. Yun, Y. Lee, and H. Roh, "Model
Checking of S3C2400X Industrial Embedded SOC
Product", Proceedings of the 38th Conference on
Design Automation Conference (DAC'2001), 2001.

[14]A. Goel, and W. R. Lee, "Formal Verification of an
IBM CoreConnect Processor Local Bus Arbiter
Core", Proceedings of the 37th Conference on
Design Automation Conference (DAC'2000), 2000.

[15]L. Barakatain, S. Tahar, J. Lamarche, and J.
Gendreau, "Practical Approaches to the Verification
of a Telecom Megacell using FormalCheck",
Proceedings of the 2001 Conference on Great Lakes
Symposium on VLSI, USA, March 2001.

[16]V. Vakilotojar, and P. A. Beerel, "RTL Verification
of Timed Asynchronous and Heterogeneous
Systems using Symbolic Model Checking",
Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC'97), 1997.

[17]R. Jhala, and K. L. McMillan, "Microarchitecture
Verification by Compositional Model Checking",
Proceedings of the 13th International Conference on
Computer Aided Verification (CAV'2001), 2001.

[18]R. E. Bryant, "Graph-Based Algorithms for Boolean
Function Manipulation", IEEE Transactions on
Computers, Vol. 35, No. 8, August 1986, pp. 677--
691.

[19]P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang,
"Verifying IP-Core based System-On-Chip
Designs", Proceedings of the 12th International
ASIC/SOC Conference, 1999.

