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Abstract 
This work proposes a memoized function to speed up on-line evolution of robot 
programs.  On-line evolution is performed on a physical robot.  It has an 
advantage over an off-line method as being robust and does not require the robot 
model.  However, on-line evolution is very time consuming.  To validate our 
proposal, an experiment with visual-reaching tasks is carried out.  The result 
shows that the memoized function can speed up on-line evolution by 23 times and 
the resulting control program performs robustly. 
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1. INTRODUCTION 
Classical approaches to robotics require mathematical models in order to plan the 
robot operations.  Because of this requirement, robots that adopt those approaches 
have to be well engineered and are normally found in a structured environment.  In 
the cases where proper models are difficult to be obtained, the traditional 
approaches fail to work.  To generate a robot controller in such situation, two 
approaches can be used.  The first approach required human intuition to program 
the robot.  A successful example of this approach is Subsumption Architecture 
proposed by Brooks [1].  The second approach used learning algorithms to 
automatically synthesize a robot controller.  Evolutionary algorithms such as 
Genetic Algorithms [2] or Genetic Programming [3] allow robots to learn.   

Natural evolution is a very slow process.  Progress has been made over 
thousands of generations, which take billions of years.  However, with the speed of 
today's computer, thousands of generations in off-line artificial evolution might 
take only few hours.  Off-line evolution of robot controllers can be done very fast 
because it occurs in simulation.  However, the controller obtained from simulation 
is not likely to work robustly when transferred to the real robot.  This is due to the 
inaccurate model of the physical world.  To overcome this shortcoming, the 
evolution can be performed with a real robot in the physical world. This is called 



on-line evolution.  However, it is very time consuming.  For example, Floreano 
and Mondada [4] could evolve an obstacle avoidance behavior on a physical 
mobile robot in about thirty hours.  Chongstitvatana and Polvichai [5] estimates 
that genetic learning of a robot arm control program will take about two thousands 
hours.   

Artificial evolution can be sped up by using some techniques such as 
modifying evolutionary algorithms, changing the genetics operators, or reducing 
the time used in evaluating an individual.  Our approach falls into the last category.  
We reduce the evaluation time by letting the robot learns the effect of its action and 
used it while evolving a controller for the task. 

This paper is organized as follows.  Evolutionary robotics is explained in 
Section 2.  Section 3 describes the experiment.  Section 4 discusses the result.  
Section 5 concludes this paper. 
 
2. EVOLUTIONARY ROBOTICS 
Natural evolution has created various types of highly fit biological creatures that 
can survive well in their environments.  A group of robotics researchers borrowed 
this idea in order to create an artificial creature that can successfully perform a task 
with little human intervention.  Evolutionary algorithms have been used 
successfully to evolve robot programs.  Genetic Algorithms (GA) was introduced 
by Holland [2].  Each individual in a GA population is a fixed-length binary string. 
Genetic Programming (GP) is a variation of GA introduced by Koza [3].  The 
major difference between GA and GP is the representation of an individual.  
Instead of being a fixed-length binary string, an individual in GP is a computer 
program whose length is varied. 

Simulation is useful for study some fundamental problems in evolutionary 
robotics [6-9]. However, Brooks [10] pointed that when using simulation, we 
might solve a problem that does not exist in the real world or the solution of the 
problem cannot be used in the real world.  This is because a simulated robot is 
usually oversimplified.  Many aspects of the real world such as noise, uncertainty, 
mass, friction, inertial forces are ignored.   

For these reasons, the evolved controller from simulation does not work 
robustly when transferred to the real world [11].  Several approaches were 
proposed to improve the robustness.  Some researchers added noise to the 
simulation to make more accurate simulation [12-14].  Some researchers 
performed experiments using simulation built from real robot's sensory and 
actuator data to model the real world more accurately [5,15]. 

Crossing the simulation-reality gap is not trivial because of two major 
reasons [13].  First, it is difficult to model any aspect of the real world accurately.  
Second, it is very difficult to include every aspects of the reality in simulation.  
Brooks recommended discarding simulation model and using a real robot as its 
model [1].   

On-line evolution of a robot controller is similar to natural evolution in the 
sense that it occurs in the real world.  The tremendous amount of time in on-line 
evolution leads to several problems [16].  This might be a reason that there are a 
few attempts to evolve a robot controller on-line.  Floreano and Mondada evolved 



an obstacle avoidance behavior for a mobile robot [4].  The behavior of neuron 
network controller converges in about thirty hours.  Dittrich and his colleagues 
evolved a controller for a robot with arbitrary structures [17]. 

  
3. MEMOIZED FUNCTION 
To evaluate an individual on-line, each robot motion is performed in the physical 
world.  However, many of these motions are repetitive hence their effects are 
already known.  If these effects are stored and reused, then a large number of 
actual motions can be eliminated.  We propose a memoized function to store the 
effects of robot motions. 

The memoized function receives joint angles as its input.  It outputs the 
positions of all joints.  Our implementation of the memoized function can hold 
every possible combination in the joint space.  Since each joint of our robot arm 
has 60 discrete steps, there are a 603 or 216,000 entries.  However, for larger size 
of configurations, we do not have to allocate all entries to implement the function.  
The technique of virtual memory can be used.  The memoized function can be 
implemented with a much smaller physical memory.   
 
4. EXPERIMENT 
The aim of this experiment is to evolve a robot program without using any 
simulation model.  The robot learned the visual reaching task on-line using GP.  
Before the on-line evolution took place, we used simulation to estimate the time 
that the robot learned the task without using the memoized function.  Different sets 
of genetic parameter were uses in simulation.  The best parameter set was used in 
on-line learning.  We compared the estimated time with the exact time spent in on-
line evolution using the memoized function.  Finally, the robustness of a resulting 
program from each run is measured. 
 
4.1 The Robot Arm and Its Task 
We constructed a three DOF robot arm as our experimental platform as shown in 
Figure 1.  Each joint of the arm is made of servo normally used in a hobby radio 
controlled airplane or car.  The arm can move only in a plane.  A CCD camera 
located above the arm provides a robot vision. The vision system monitors the 
distance between the tip and the target and checks whether the robot hit any 
obstacles. 

Although the robot looks simple, building an accurate model is not obvious.  
The real robot as its model gives the following properties: 
• Lens distortion.  An inexpensive surveillance CCD camera used in this 

experiment has pretty high distortion.  The length of each links varied from 
angle to angle. 

• Camera calibration.  By not depending on any mathematical model, there is no 
need to calibrate the camera to fit with the model.  The camera can be placed 
at any height from the robot-moving plane as long as it can see the arm 
movement. 

• Motor effect.  The robot can learn the effect of its motor command such as 
joint positions during the evolution of control program.   



As shown in Figure 2, five instances of the visual-reaching problem similar to 
those in [14] were created as the representatives of the problem.  They are varied in 
degree of difficulty.  A circle in each picture is a target.  Black rectangles are 
obstacles.  During the learning period, the robot can freely move from one 
configuration to another without hitting any obstacles.  However, in the testing 
period, it has to reach the target while avoiding the obstacles. 

 
4.2 The Control Program 
GP used primitives in a terminal and a function set to construct a robot program.  
The terminals set contains robot motion command and sensing primitives.  A 
motion command primitive moves a specific joint one step.  A sensing primitive 
senses if any of the robot’s links hit an obstacle or whether the tip is closer to the 
target.  The function set contains basic control flow primitives, which are IF, 
IF_AND, IF_OR, NOT.  The structure of the robot program makes the robot 
reactive. 

 

 
 
Figure 1. A robot arm seen from its vision 
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Figure 2. Instances of a target-reaching problem 
 



4.3 Fitness Function 
Each robot program is given a limited amount of steps to be executed before its 
fitness is evaluated.  The further the distance from the tip of the arm to the target, 
the lower the fitness.  If the distance between the tip and the target is equal or less 
than 2 pixels, the robot is successfully perform the task.  A fitness function f is 
defined as follows. 
 

f(v) = 1000;    d(v, tip) ≤ 2 
        = 1000 – d(v, tip); otherwise 

 
where d(v1, v2) is the distance between point v1 and v2. 
 
4.4 Genetic Parameters 
Standard GP is used in our experiment.  Before we evolved the robot program on 
the physical robot, we conduct an experiment in simulation to test the performance 
of our approach.  We found that the population size affected the on-line evolution 
time.  Among tested population size, the size of 200 individuals gives the best 
estimation result in evolution time.   

We made no efforts in optimizing other genetic parameters.  The parameters 
are similar to those in [14] except that the evolution is continued until no progress 
has been made during 10 consecutive generations.  If the evolution stops without a 
solution, it will be rerun with the memoized function that has already been filled. 
 
5. RESULT 
As shown in Table 1, a physical robot can learn the task on-line in less than one 
hour on average when using the memoized function.  We compared the 
performance of our approach with normal on-line evolution.  Since it took a 
considerable amount of time for a robot to learn the task on-line without using the 
memoized function, learning time is estimated by using simulation.  The estimation 
assumed that each movement of a simulated robot took one second to complete 
similar to the physical robot.  When compared the estimated time with the actual 
on-line evolution time, the average speed up is about 23 times. 

 
Table 1. Evolution time  

Problem With 
Memoize 
(hours) 

Without 
Memoize 
(hours) 

Speed up 
(times) 

Recall 
(% ) 

Memory used 
(%) 

A 0.51 5.00 9.64 89.52 0.90 
B 0.64 6.33 7.80 85.65 1.13 
C 1.19 25.32 20.93 94.82 2.20 
D 1.28 132.68 59.09 93.45 2.31 
E 0.93 34.81 17.18 81.91 1.79 
Average 0.91 40.83 22.93 89.07 1.67 

 
 The recall rate is very high.  Each recall means the required data is found 

in memory, which means that the robot does not have to move in the physical 



world.  Less than 3% of the memory allocated for the memoized function were 
used.  The usage of the memory depends on the time it takes to learn the task.  The 
first generation filled more entries compared to later generations.  This is because 
the offspring is likely to be in the same configurations as its parents is.  The new 
configurations implies the exploration of the offspring.   

Figure 3. Recall rate versus speed up 
 

As show in Figure 3, the percentage of recall and speed up are exponentially 
related.  Starting from zero recall, the speed up is equal to one (i.e., no speed up.)  
The speed up grows much larger when the recall rate is above 95%.  A controller 
for a more complex task might be able to evolve on-line in a reasonable amount of 
time if the recall rate is very high. 

The robustness of a robot program is the percentage of times the robot can 
successfully perform the task.  We compared the robustness of a program evolved 
off-line (i.e., in simulation) and on-line with the memoized function (i.e., in the 
real world).  The result is shown in Table 2.  The average robustness of a program 
evolved on-line is 27% higher than evolved off-line.  The robustness depends on 
the similarity between the environment that is used to evolve robot programs and 
the environment that the robot programs actually work.  The on-line evolution 
occurred in the actual environment that the robot programs work as opposed to the 
off-line evolution which used the simulation.  Therefore, a program evolved on-
line evolution tends to have higher robustness. 

We found that the failed program moved to the configuration that is not found 
in memory many times more than the successful program does.  In other words, the 
failed program moved to the configuration it was not learned during the evolution.  
We hypothesize that this is due to noise in the system that leads the robot to move 
to unknown configurations.  One way to improve the robustness is to add the same 
level of noise to the memoized function when evolving a control program. 
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Table 2.  Robustness of an evolve program 
Problem Robustness of a program 

evolved off-line 
Robustness of a program evolved 

on-line with the memoized 
function 

A 82 98 
B 26 76 
C 82 82 
D 56 60 
E 28 92 
Average 55 82 
 
6. CONCLUSION 
Inaccurate models resulted in fragile behavior of a robot.  On-line evolution 
eliminates the use of any mathematical models of the robot.  However, on-line 
evolution is very time consuming.  By using the memoized function, on-line 
evolution of a visual-reaching task can be speed up by about 23 times.  The 
evolved robot program works robustly in the testing environment.  The size of 
required memory for implementing memoized function grows exponentially with 
the degree of freedom of the robot.  However, the memoized function can be 
implemented with the technique of virtual memory as it is found that the percent of 
use is low in our experiment. 

To improve the robustness, noise can be added to a memoized function.  The 
memoized function can be replaced by another learning method, which will learn 
the effect of robot movement.  The remaining question is that the speed up is 
enough to learn more difficult task or with a high DOF robot.   
 
References 
1. Brooks R., “New Approaches to Robotics”, Science 254, pp. 1227-1232, Sep. 

1991. 
2. Holland J., Adaptation in Natural and Artificial Systems, University of 

Michigan Press, 1975. 
3. Koza J., Genetic Programming, volume (1), MIT Press, 1992. 
4. Floreano D., Mondada F., “Automatic Creation of an Autonomous Agent: 

Genetic Evolution of a Neural-Network Driven Robot”, Proceeding of the 3rd 
Inter. Conf. on Simulation of Adaptive Behavior, 1994. 

5. Chongstitvatana P., Polvichai J., “Learning a visual task by genetic 
programming”, Proceedings of IEEE/RSJ Inter. Conf. on Intelligent Robots 
and Systems, 1996. 

6. Koza J., “Evolution of Subsumption using Genetic Programming”, 
Proceedings of the First European Conference on Artificial Life, pp. 110-119, 
1992. 

7. Nolfi   S., Floreano D., “Learning and Evolution”, Autonomous Robots, 1999. 
8. Chongstitvatana P., “Using Perturbation to Improve Robustness of Solutions 

Generated by Genetic Programming for Robot Learning”, Journal of Circuits, 
Systems and Computer, vol. 9, no 1 & 2, pp. 133-143, 1999. 



9. Suwannik, W., Chongstitvatana, P., “Improving the Robustness of Evolved 
Robot Arm Control Programs Generated by Genetic Programming”, 
Proceedings of Inter. Conf. on Intelligent Technologies, pp. 149-153, 
December 2000.  

10. Brooks R., “Artificial Life and Real Robots”, Proceedings of the First 
European Conference on Artificial Life, pp. 3-10, 1992. 

11. Polvichai J., Chongstitvatana, P., “Visually-guided reaching by genetic 
programming”, Proceedings of 2nd Asian Conf. on Computer Vision, pp. 329-
333, December 1995. 

12. Miglino O., Lund H., Nolfi S., “Evolving Mobile Robots in Simulated and 
Real Environments”, Artificial Life, pp. 417-434, 1995. 

13. Jakobi N., Minimal Simulations for Evolutionary Robotics, PhD. thesis, 
University of Sussex, 1998.  

14. Suwannik, W., Chongstitvatana, P., “Improving the Robustness of Evolved 
Robot Arm Control Programs with Multiple Configurations”, Proceedings of 
Asian Symposium on Industrial Automation and Robotics, pp. 87-90, May 
2001. 

15. Lund H., Hallam J., “Evolving Sufficient Robot Controllers”, Proceeding of 
IEEE Inter. Conf. on Evolutionary Computation, 1996. 

16. Mataric M., Cliff D., “Challenges in Evolving Controllers for Physical 
Robots”, Special Issues of Robotics and Autonomous System, Vol. 19, No. 1, 
pp. 67-83, October 1996. 

17. Dittrich P., Bürgel A., Banzhaf W., “Learning to Move a Robot with Random 
Morphology”, Proceedings of the First European Workshop on Evolutionary 
Robotics, pp. 168-178, 1998. 

 


