

An Improved Genetic Algorithm for the Inference of Finite State Machine

N. Niparnan and P. Chongstitvatana Chulalongkorn University

- Learn the target machine
 - by mimicking I/O behavior

Introduction

- The problem of inferring a compact finite automaton that is consistent with a set of input/output sequence.
- NP-Complete problem.
- Genetic Algorithm were used by many researcher to solve the problem.
- We propose a new efficient Genetic Algorithm for the problem.

Former Method

- Encodes δ and λ in bit string
- Single point crossover
- Evaluates by counting different output bit

Flaw in the Former Method

Hypothesis Machine

- Former method does not effectively evaluates the FSM
- Output function of the machine is not needed to be evolved

The New Method

- Evolves a partial mealy machine
- Encodes only δ
 - $-\lambda$ will be defined later
- Evaluates by considering conflicts of outputs

Evaluation

Input : 0 0 1 0 1 0 1

Output : 0 1 1 0 0 0 0

acdadad

Input	State X		State Y	
	Output 0	Output 1	Output 0	Output 1
0	3			1
1			2	1

Evalutaion value = 3 + 0 + 1 + 2 = 6

Output Definition

Input	State X		State Y	
	Output 0	Output 1	Output 0	Output 1
0	3			1
1			2	1

Output:

- (a) $\rightarrow 0$
- (b) \rightarrow N/A (arbitrary value)
- (c) $\rightarrow 1$
- (d) $\rightarrow 0$

Improvement

- Reduce effect of misleading evaluation
- Reduce inference of output

Result : 1 Bit Output

Result : 2 Bits Output

Result : 3 Bits Output

Conclusion

- A new GA method for inferring FSM
- Reduce search space, more accurate search guidance
- Results confirm the validity of the method