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Abstract

The purpose of this work is to improve
performance of a 16-bit stack processor.  This
processor is suitable for embedded applications.  A
stack processor has an advantage of low complexity
but its performance can be improved.  Observing the
instruction fetch consumes 53% of the execution
cycle, focusing on improving instuction fetch is the
primary goal of this work.  The proposed scheme
uses 16-bit fetch with some additional path to
reduce the number of control cycle.  The work also
suggests the use of instruction compression.  The
result shows the performance improvement of 32%
and 37% respectively, achieving the reduction in
instruction fetch cycle by 61% and 70%.

1. Introduction

Embedded systems are emerging as a major driving force
for computing devices.  The much larger volume of
demand makes embedded systems a dominant factor in
industries. Hand held devices are becoming prevalent in
today society.  Mobile phone, PDA and the like are
increasingly more powerful, they will play media rich
data: songs, movies and will be the center of
communication for everyday life.  The media rich
application has driven the design into a new direction [1].

One example of the emerging trend is the mobile code [2].
In the server-client model, the server ships an executable
code to the client to be executed there.  The portability is
the primary goal, that the mobile code is independent of
the client platforms.  The compactness of code [3] is the
secondary goal, to reduce the time for transporting the
mobile code through the network and to reduce the
storage requirement on the client devices.

For mobile applications, bytecode becomes a popular
choice of mobile code.  Bytecode achieves a good code
compaction [4]. A program in the form of the intermediate
code of a stack-based instruction set is more compact than

a program in the form of the machine code of a register-
based instruction set. One reason is that the location of an
operand is implicit in the stack pointer, on the other hand,
the operand of a register machine must be declared
explicitly. An example of a popular bytecode is the Class
File or Java bytecodes [5] of the Java language.

We have designed a stack-based processor [6] aimed at a
low cost device. This processor can execute bytecode
directly. The motivation behind this design is to build a
processor which consumes very small resource.  Stack
architecture is suitable for such goal.  The processor has
16-bit data path. It contains a few number of dedicate
registers. Its instruction is small and tends toward
minimalist, hence the low complexity in the design.

The aim of this work is to improve the performance of
this processor. However, the original goal of low resource
devices must be preserved.  So, the challenge is to
improve the performance using as little as possible
additional resource on the chip. We observe that
instruction fetch consumes more than half of execution
cycles. Improving instruction fetch will improve
performance. This is the area focused by this work.  The
next section describes the stack processor architecture and
our approach to improve the instruction fetch.

2. Stack Processor

It is a 16-bit processor.  Its instruction set is stack-based
instruction.  The instructions are byte-coded to achieve
compact executable.  The data path is simple.  It contains
4 registers: top of stack (TOS), program counter (PC),
stack pointer (SP), frame pointer (FP). The top-of-stack
register caches the top-most value of the evaluation stack.
The stack pointer points to the data on the top of stack.
The frame pointer points to the activation record which
manages subroutine call.

There are two internal buses: data bus and temp bus.  The
data bus transfers 16-bit data to and from an external
memory.  The temp bus is connected to data bus by a
buffer (buf). Two internal registers: FF for storing a
temporaly value and MAR (memory address register).



MAR drives the address of the external memory.  The
intruction fetch unit contains three 8-bit registers:
instruction register (IR), operand-0 (OPR0), operand-1
(OPR1).  The OPR0 and OPR1 can be concatenated to
form a 16-bit operand.  (See Fig 1)
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Fig 1 the micro architecture of the stack processor

The instruction format consists of 8-bit op-code and zero
or one operand.  The operand is either 8-bit or 16-bit.
The addressing for data is on word-boundary but for
instruction is on byte-boundary as the instruction is byte-
addressed. Each instruction fetch is one byte at a time.
The data is accessed on word (16-bit) basis.

The current design requires approximately 6000
equivalent gates on a Xilinx FPGA device.

3. Improving the instruction fetch

The control unit fetches byte-coded instruction byte by
byte through a 16-bit data bus.  This is an obvious goal to
pursue more instruction bandwidth through the data bus.
Four incremental improvements are done:
1)  16-bit fetch and caching the low-address byte.
2)  add increment PC
3)  add direct path to MAR
4)  instruction compression

In the following section the micro-cycle of the original
control unit will be described and the suggested
improvement will be explained. The original control
scheme is denoted m1.  The improved version with 16-bit

fetch (1+2+3 above) is denoted m3.  The version with
instruction compression (4) is denoted m4.  The source->
destination notation is used to describe data transfer in the
data path.

Each micro-cycle operates on bus->register and register->
bus basis.  It can not transfer register to register in one
cycle.  The instruction fetch works as follows:
<m1 baseline>

1        PC->alu->tbus
2        tbus->MAR, Mread
3        dbus->IR
4        PC->alu(+1)->tbus
5        switch(num_of_argument_byte(IR))
6   0:  tbus->PC, dispatch
7   1:  tbus->MAR, tbus->PC, Mread
8        dbus->OPR1, sign-ex->OPR0,
                PC->alu(+1)->tbus
9        tbus->PC, dispatch
10  2: tbus->MAR, tbus->PC, Mread
11      dbus->OPR0, PC->alu(+1)->tbus
12      tbus->MAR, tbus->PC, Mread
13      dbus->OPR1, PC->alu(+1)->tbus
14      tbus->PC, dispatch

For zero argument, it takes 5 cycles. For 8-bit argument, it
takes 7 cycles and for 16-bit argument it takes 9 cycles for
instruction fetch.  Line 5 does not counted as it is internal
branching operation of the control unit.  Line 3 fetches the
op-code byte.  For 8-bit argument, line 7-8 fetches the
argument to OPR1 and sign extends it to OPR0 to form a
16-bit operand.  For 16-bit argument, line 10-11 fetches
the first byte to OPR0, line 12-13 fetches the second byte
to OPR1.

To reduce the number of memory read, the fetching
should be done 16-bit at a time.  The gain will come from
the instruction that has 8-bit argument as it takes only one
memory read when the address is word-aligned. The first
byte is op-code. The second byte is 8-bit argument.  For
16-bit argument, it always a gain because only two
memory reads are required instead of three  byte-reads.
For unaligned address, the odd-address byte of the
previous memory read can be cached and reused.  Let
denote an even address as high byte and odd address as
low byte (big-endian).  MLO is an 8 bit register caching
the low byte (See Fig. 2)
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The initial state for each instruction fetch is determined by
the least significant bit of the current PC. There are 4
distinguished states: fetch even, fetch odd, refetch even,
refetch odd.  On refetch odd, the old low byte has already
been in the cache so no additional memory read is needed.
At the end of execution, if no branching is done, "refetch"
is performed.  If the instruction is control-transfer, cache
must be refresh and "fetch" is performed.  To reduce the
number of micro-cycle, increment PC operation is added
to the data path, denoted by PC+1.  The micro-cycle for
four instruction fetch states are presented separately as
follows:

fetch even

PC->alu->tbus
tbus->MAR, Mread
low->MLO, high->IR, PC+1

switch num_of_argument_byte(IR)
0: dispatch
1: MLO->OPR1, sign-ex->OPR0, PC+1,
    dispatch
2: MLO->OPR0, PC->alu->tbus
    tbus->MAR, Mread, PC+1

low->MLO, high->OPR1, PC+1,
dispatch

fetch odd

PC->alu->tbus
tbus->MAR, Mread
low->IR, PC+1

switch num_of_argument_byte(IR)
0: dispatch
1: PC->alu->tbus
    tbus->MAR, Mread, PC+1
    low->MLO, high->OPR1, sign-ex->OPR0,
    dispatch
2: PC->alu->tbus
    tbus->MAR, Mread, PC+1

high->OPR0, low->OPR1, PC+1,
dispatch

refetch even is similar to fetch even.

refetch odd

MLO->IR, PC+1
switch num_of_argument_byte(IR)
...
the rest is similar to fetch odd

The above four states are combined into one control
sequence.The least significant bit (right most) of PC when
it is latched into MAR is used. It is stored in a one-bit
register, LB.  LB is used to branch on even/odd address.
Let selectbus(LB) denotes a multiplexor of high/low data
bus to IR. The control sequence is as follows:

1         PC->alu->tbus
2         tbus->MAR, Mread
3         low->MLO, selectbus(LB)->IR, PC+1
4         switch(num_of_argument_byte(IR))
5    0:  dispatch
6    1:  if even (LB = 0)
7            MLO->OPR1, sign-ex->OPR0, PC+1,
              dispatch
8         else odd (LB = 1)
9            PC->alu->tbus
10          tbus->MAR, Mread, PC+1
11          low->MLO, high->OPR1,
              sign-ex->OPR0, dispatch
12   2:  if even (LB = 0)
13           MLO->OPR0, PC->alu(+1)->tbus
14           tbus->MAR, Mread, PC+1
15           low->MLO, high->OPR1, PC+1,
               dispatch
16        else odd (LB = 1)
17           PC->alu->tbus
18           tbus->MAR, Mread, PC+1
19           high->OPR0, low->OPR1, PC+1,

   dispatch

For refetch odd, line 1-3 is changed to

1-3 MLO->IR, PC+1

Line 4, 6, 8, 12, 16 are internal branching of the control
unit.  The number of micro-cycle (for instruction started at
even/odd address) is reduced to 4/4 cycles for zero
argument, 4/6 cycles for 8-bit argument, 6/6 cycles and for
16-bit argument.  Refetch odd reduces another 2 cycles.

This control sequence can be improved further. Observing
that transfering PC to MAR is 2 cycles.  Creating a direct
path PC->MAR will shorten this to one cycle.  However
for fetch even with an argument 2 bytes, line 13-15:



13       MLO->OPR0, PC->alu(+1)->tbus
14       tbus->MAR, Mread, PC+1
15       low->MLO, high->OPR1, PC+1, dispatch

Having a direct PC->MAR will not reduce the cycle on
this sequence because the need to increment PC.  So, a
functional unit PC+1->MAR is added to the data path as
Fig. 3.

PC

+1
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Fig. 3 show circuit changed by add adder at pc

  Including these two changes into the control unit, the
micro-cycle becomes:

<m3 fetch16>

1 PC->MAR, Mread
2  low->MLO, selectbus(LB)->IR, PC+1
3  switch(num_of_argument_byte(IR))
4  0:      dispatch
5  1:     if even (LB = 0)
6            MLO->OPR1, sign-ex->OPR0,

       PC+1, dispatch
7          else odd (LB = 1)
8               PC->MAR, Mread, PC+1
9                low->MLO, high->OPR1,

       sign-ex->OPR0, dispatch
10 2:       if even (LB = 0)
11              MLO->OPR0, PC+1->MAR,

       Mread, PC+1
12              low->MLO, high->OPR1, PC+1,

       dispatch
13          else odd (LB = 1)
14               PC->MAR, Mread, PC+1
15               high->OPR0, low->OPR1, PC+1,

        dispatch

The number of micro-cycle (for instruction started at
even/odd address) is 3/3 cycles for zero argument, 3/4
cycles for 8-bit argument, 4/4 cycles and for 16-bit
argument.  Refetch odd reduces another cycle.

Ultimately, to reduce the number of cycle of instruction
fetch, the size of instruction must be reduced. One

approach for instruction compression [7] [8] [3] [4] is by
restricting the range of argument and/or combining a small
argument with the instruction into one byte.  This requires
change in instruction format.  For illustrative purpose, we
conduct an experiment, choosing to compress two most
frequently used instructions, load/store local and two
instructions that are easy to modify, jump conditional.
Load/store local has 8-bit argument.  Jump conditional has
16-bit argument.   For load/store, the range of local
variable is restricted to 1..16 (4-bit), so the instruction can
be combined with its argument into one byte.  For jump
conditional, the range of offset is restricted to 12-bit, and
combine the instruction with 12-bit argument into two
bytes.  This choice is a small set that can illustrate the
effect of code compression on instruction fetch cycles.
The set covers both 8-bit argument and 16-bit argument
compression.  This modification does not change the
micro-cycle of the instruction fetch except for different
decoding of the instruction.  It only affects the amount of
memory read for instructions.  The micro-cycle sequence
for m4 is the same as m3.

4. Experiment

The effect of instruction fetch on the improved control
unit is measured and compared with the original control
unit.  The number of cycles of the processor executing
benchmark program are measured under cycle-accurate
simulation.  The detail of the benchmark programs is
shown in Table 1.  Table 2 shows the number of cycles in
executing benchmark programs.  Columns f1, f3, f4 are
the number of cycles of instruction fetch of m1 -- the
baseline machine with the original control unit, m3 -- with
16-bit fetch and additional direct path, m4 -- with code
compression consecutively.  Table 3 shows the number of
memory read for instruction fetch from code segment of
three machines, c1, c3, c4 for m1, m3, m4 consecutively.
Table 4 shows the total number of instruction executed of
each programs.

Table 1  Stanford benchmark programs

Bubble Sort 20 numbers by bubble sort algorith
Hanoi Find a solution to move 6 disks in tower of

Hanoi
Matmul Multiply two 4x4 matrices
Perm Permute 4 digits of 0, 1, 2, 3
Quick Sort 20 numbers by quick sort algorithm
Queen Find all solutions of 8-queen problem
Sieve Find all prime numbers less than 500



5. Discussion

The column q1 in Table 5 shows the ratio of cycles of
instruction fetch over total cycles (q1 = f1/t1) of the
baseline control unit.  This shows that 53% of cycles are
consumed in the instruction fetch. The column q2 shows
the percent of reduction of cycles in instruction fetch of
m3 (fetch 16-bit) over m1 (1-f3/f1).  The proposed control
unit reduces the number of cycle in instruction fetch by
61%.  The column q3 shows the similar figure for m4
(with code compression) over m1 (1-f4/f1).  With code
compression the number of cycle in instruction fetch is
reduced 70%.  Fig. 3 shows the comparison of the number
of cycle in instruction fetch of three machines (%).

Fig 3 the number of cycle in instruction fetch of m1,
m3, m4. for each program

With 16-bit fetching the number of memory read in code
segment is also reduced.  The column q4 (1-c3/c1) in
Table 5 shows the percent reduction in the number of CS
read of m3 (fetch 16-bit) over m1 is 46%.  The column q5
(1-c4/c1) in Table 5 shows the similar figure for m3 (fetch
16-bit) over m1, 59%.  Fig. 4 shows the comparison of the
number of memory read for instruction fetch of three
machines.

Fig 4 the number of memory read in instruction fetch
of m1, m3, m4

All these numbers translate to performance improvement.
The column q6 indicates
the speedup of m3 over m1 (1-t3/t1), 32%.  The column
q7 indicates the speedup of m4 over m1 (1-t4/t1), 37%.
The performance can be shown in terms of the number of
cycle per instruction (CPI).  m1's CPI is (t1/I1) 12.58.
m3's CPI is (t3/I1), 8.44.  For m4, its CPI is (t4/I1), 7.83.
In addition, the instruction compression also reduces the
static code size by 16% (data is not shown).

In summary, the proposed control sequence for
instruction fetch, m3 which fetch 16-bit, reduces the
number of cycles of instruction fetch more than half over
the original scheme. It also reduces the number of memory
read for instruction fetch by almost half.  Using it with
instruction compression, m4, reduces the number of cycle
of instruction fetch further to 61%.  In terms of
performance, the 16-bit fetch scheme shows 32% speedup
over the original.  This is quite a remarkable result
considering how little additional hardware the proposed
scheme required.

6. Conclusion

This work presents an improvement of instruction fetch
control sequence of a stack-based embedded processor.
Instead of fetching byte-coded instructions byte by byte,
the proposed scheme fetches 16-bit.  The result is an
improvement in performance stemmed from reduction of
cycles in instruction fetch.  The experiment is carried out
to measure the effect of the proposed scheme via cycle-
accurate simulation of executing benchmark programs.
The design presented here achieves 32% speedup over the
original design. Moreover, using with instruction
compression, it can achieve 37% speedup.  The
modification of data path is kept to a minimum. This
indicates a good return on investment and is applicable to
a small embedded processor design.
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Table 2 the number of cycles
Program f1* f3** f4*** t1**** t3**** t4****
bubble 78847 30062 23320 147731 98946 92204
hanoi 15729 60535 4817 29696 20002 18784
Matmul 98054 39079 28871 182235 123260 113052
perm 37635 14699 11347 69301 46365 43013
queen 4826363 1794447 1408594 8909675 5877759 5491906
quick 26990 10762 7899 49687 33459 30596
sieve 117677 45640 35112 221670 149633 139105

*f1 no of cycle of instruction fetch of m1 baseline
**f3 no of cycle of instruction fetch of m3
***f4 no of cycle of instruction fetch of m4 (with code compression)
****t1, t3, t4 total no of cycle for m1, m3, m4

Table 3 the number of CS read (byte)
program C1* C3** C4***
Bubble 21729 11384 8730
Hanoi 4454 2323 1888
Matmul 28410 14937 11141
Perm 10681 5802 4228
queen 1267531 664375 510114
quick 7588 4192 3011
sieve 33124 17225 13276
*c1 no of CS read of m1 baseline
**c3 no of CS read of m3
***c4 no of CS read of m4 (with code compression

Table 4 total number of instruction executed (instruction)
program I1
bubble 11925
hanoi 2317
matmul 13886
perm 5469
queen 765141
quick 3972
sieve 17151

Table 5 computed results from Table 2 and Table 3
program Q1 Q2 Q3 Q4 Q5 Q6 Q7
Buble 53.37 61.87 70.42 47.61 59.82 33.02 37.59
Hanoi 52.97 61.63 69.38 47.84 57.61 32.64 36.75
Matmul 53.81 60.15 70.56 47.42 60.78 32.36 37.96
Perm 54.31 60.94 69.85 45.68 60.42 33.10 37.93
Queen 54.17 62.82 70.81 47.59 59.76 34.03 38.36
Quick 54.32 60.13 70.73 44.75 60.32 32.66 38.42
Sieve 53.09 61.22 70.16 48.00 59.92 32.50 37.25
average 53.72 61.25 70.27 46.98 59.80 32.90 37.75
q1 % num. of cycles in instruction fetch
q2 % reduction of cycles in instruction fetch of m3 over m1
q3 % reduction of cycles in instruction fetch of m4 over m1
q4 % reduction of cycles in num. of CS read of m3 over m1
q5 % reduction of cycles in num. of CS read of m3 over m1


