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ABTRACT 
 This work introduces a technique which applies a 
stack-based intermediate code, also called as bytecodes, 
to reduce the size of programs in an embedded system. A 
hardware interpreter known as the Translation Unit 
translates bytecodes into native codes before execution. 
Experiments show that a program written in bytecodes is 
smaller than one written in native codes by 16%-38%. 
 
Keyword: Code-size reduction, Code compression, 
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1. INTRODUCTION 
 Embedded microcontrollers are highly constrained in 
cost, power and area. Therefore it is important to reduce 
the microcontroller die area. This will increase the 
amount of die per wafer and eventually increases the die 
yield in the microcontroller production.  In addition, 
decreasing the size of program memory, a major part of 
the embedded microcontroller, will also reduce the die 
area for on-chip memory. 
 This work introduces a way to run small-sized 
programs in an embedded system using a combination of 
interpreter and stack-based intermediate codes, or also 
called bytecodes, which will reduce the program size. 
 This paper is sectioned into 5 parts. Section 2, the 
fundamentals of code size reduction and its efficiency 
metrics are explained.  The next section discusses the 
proposed technique. In Section 4, the experiments to 
measure the compression ratio and the result are shown.  
After the research summary in Section 5, the last section 
details the related work of code size reduction. 
 
2. CODE-SIZE REDUCTION BACKGROUND 
 Code size reduction is a technique to reduce code 
size.  There are two popular techniques: code compaction 
and code compression. 
 The first technique, code compression, uses data 
compression algorithms on machine codes.  On the other 
hand, code compaction reduces the program size by using 
compiler optimization to rearrange and eliminate 
superfluous codes.  This allows the compressed program 
to be executed immediately without needing 
decompression as in the code compression technique. 
Decompression will show down the system operation in 
code compression. However, using compression 

algorithm in code compression will reduce the program 
size more than using code compaction. 
 The efficiency of the code size reduction technique is 
measured through the compression ratio as in equation (1) 

   Compression Ratio = 
Compressed size

Uncompressed size          (1) 

3. SYSTEM DESIGN 

3.1 Overview 
 This work introduces a way to reduce the program 
size using the approach in [1, 2] which says that a 
program in the form of the intermediate code of a stack-
based instruction set will be smaller than a program in the 
form of the machine code of a register-based instruction 
set.  An example of a popular bytecode is the Class File 
or Java bytecodes [3] of the Java language. 
 The reason a program in the form of the bytecode is 
smaller than one in the form of the machine code is as 
follow: 

• Bytecode instruction set has higher semantic 
content than register instruction set. 
Therefore, a bytecode instruction is equal to 
many register machine instructions. 

• Bytecode is a stack-based instruction set 
which the location of an operand is implicit 
in the stack pointer. On the other hand, the 
operand of a register machine must be 
declared explicitly, so bytecode instruction’s 
size is smaller than register instruction’s 
size. 

 There are two alternatives to implement bytecodes in 
an embedded system. The first alternative is to build a 
machine that can execute bytecodes directly. The 
machine of this type is called a stack machine. 
 The second alternative is to run bytecodes on a 
virtual machine. The virtual machine can be hosted on 
any architecture. The popular choice is to host a virtual 
machine on a register-based machine because of the 
availability of high performance register-based processors 
in the market. 
 The virtual machine uses an interpreter to translate 
the bytecode instruction into the register-based 
instruction.  One of the most time consuming operation in 
interpreting a bytecode is the instruction dispatch. The 
dispatcher in a high-level language implementation of a 



virtual machine is composed of a switch-case construct 
for each bytecode instruction.  This causes the operation 
to be slower than the operation of the native code. 
 
3.2 Design 
 To improve the speed of execution of bytecodes, a 
hardware virtual machine is used. The hardware 
interpreter is shown in Figure 1. A register-based 
processor core is assumed. The translation unit is the 
main contribution of this work. The details of this unit are 
discussed next. 
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Fig. 1: Virtual machine with translation unit 
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Fig. 2: Translation unit component 

 
 The components of the translation unit are shown in 
Figure 2. They consist of the bytecode decoder, the native 
code memory and the operand multiplexer.  In each 
operation of bytecode, the native code memory records 
the sequence of native codes which achieve the correct 
operation.   
 The bytecode decoder is a look-up table that stores 
the address and the number of native codes in the 
sequence.  It maps a bytecode into the sequence of native 
codes in the native code memory. 
 Some bytecode contains an operand such as a literal 
(Figure 3), an instruction that pushes an immediate 
operand into the stack.  In the operation of a virtual 
machine, the operand in the bytecode must be passed to 
the operand field of the correct native code in the 
sequence. The operand multiplexer in the translation unit 
will send the operand to the first instruction of the native 
code instruction which allows the CPU to read the 
operand from the bytecode. 
 For embedded system applications, one major 
consideration is the circuit size of the translation unit.  
The size of the translation unit depends on the size of the 
look-up table in the decoder and the size of the native 
code memory in the translation unit. The size of the look-
up table depends on the amount of entry or the number of 
bytecode instructions in the table. For the native code 
memory, its size depends on the length of the sequence of 
native codes corresponded to a bytecode. This is affected 

by the difference of the bytecode instruction and the 
architecture of the CPU. 
 Consequently, the bytecode instruction set should not 
include too many instructions.  This work employs 27 
simple bytecode instructions from [4].  A small size CPU, 
suitable for an embedded system in [5, 6], is used.  The 
CPU consists of 4 registers: 

• Stack Pointer (SP) which points to the data on 
the top of stack, 

• Frame Pointer (FP) which manages subroutine 
calls, 

• Top of Stack (TOS) which caches the topmost 
value of the stack in the register, and 

• Buffer (BUFF) which keeps intermediate values. 
 The translation unit fetches bytecodes from the 
instruction memory and feeds CPU with native codes.  
Because the addresses of bytecode are different from the 
addresses of native code, the control flow instructions 
such as jumps and calls require special attention. The 
translation unit feeds the native jump instruction to the 
CPU so that the program counter points to the appropriate 
bytecode.  For the call instruction, the CPU performs 
save/restore the program counter to the stack segment.  
The translation unit must feed the correct sequence of 
native codes to achieve this effect. 
 An example of translating a bytecode to the native 
code is the translation of the Literal instruction that 
pushes a constant into the top of stack and the Add 
instruction that adds 2 top values in the stack and keeps 
the result in the top of stack are shown in Figure 3. 
 

Bytecode Native code 

Literal  #constant 

movi buff, #constant 
stw         tos, 0(sp) 
mov tos, buff 
subi sp, 1 

Add 

ldw         buff, 1(sp) 
add         buff, tos 
mov tos, buff 
addi sp, 1 

Fig. 3: Example of bytecode translation : Literal and Add 
instructions 
 
 The system is developed in the form of RTL 
(Register Transfer Level) using Verilog HDL.  It is 
verified by simulation method through the program 
ModelSim version 5.6e, Xilinx. 
 
4. EXPERIMENT 
 The purpose of the experiment is to measure the 
efficiency of code size reduction. The compression ratio 
is measured using the integer benchmark Stanford 
(Hennessy and Nye). The description of each program in 
the benchmark is shown in the following Table 1. 
 The size of the program compiled in the bytecode 
compared with a program in the native code. A special 
compiler is used to compile high-level programs into 
bytecodes. A simple instruction specialization is applied 
to the bytecode programs. The frequently used sequences 



of bytecodes in the program are replaced with a special 
instruction to reduce the size. The lists of the special 
instructions are shown in table2. 
 
Table. 1: Stanford benchmark 
Benchmark Description 
Bubble Sort 20 numbers by bubble sort algorith 
Quick Sort 20 numbers by quick sort algorithm 

Hanoi Find a solution to move 3 disks in 
problem - tower of hanoi 

Sieve Find all prime numbers less than 100 
8-Queen Find all solutions of 8-queen problem 
Matmul Multiply matrix 5×5 
Perm Permute 4 digits of 0, 1, 2, 3 

 
 A special compiler is used to compile high-level 
programs into bytecodes. The size of a program compiled 
into bytecodes is compared with the program in the native 
code. A simple instruction specialization is applied to the 
bytecode programs. The frequently used sequences of 
bytecodes in the program are replaced with a special 
instruction to reduce the size. The lists of the special 
instructions are shown in Table2. 
 
Table. 2: Special bytecode instructions which are added 
into the bytecode instruction set 
Bytecode instruction Function 
INC     #local Increment the local variable 
DEC    #local Decrement the local variable 
Lit0 Push literal 0 to the top of stack 
Lit1 Push literal 1 to the top of stack 
Rval1, Rval2, Rval3, 
Rval4 

Get local variable 1, 2, 3 or 4 
and push it into the top of stack 

JLt      #address Jump if the top of stack is less 
than the second 

JEq     #address Jump if the top of stack equals 
the second 

 
 
Table. 3: Size’s comparison between bytecode and native 
code program (in bytes) 
Program Bytecode 

size 
Native 

code size 
Compression 

Ratio 
Bubble 128 158 0.81 
Quick 253 306 0.82 
Hanoi 128 178 0.71 
Sieve 154 196 0.79 
8-Queen 125 168 0.74 
Matmul 253 298 0.84 
Perm 221 356 0.62 
 
 The programs in native code are written in an 
assembly code. They are directly translated from the 
high-level code. Register allocation is not applied in the 
translation as there are only 4 registers. The size of the 
program in bytecode and native code are shown in Table 
3. 
 
 

5. CONCLUSION 
 The result in the experiments shows that the 
compression ratio is ranged from 0.60 to 0.84 with an 
average 0.76. It still can be reduced further through 
sequence analysis of the common bytecode and 
substituting those redundant sequences with a special 
instruction. 
 Presently, the system has been tested on a simulator.  
The next step is to develop the system to operate on a real 
chip using the FPGA (Field Programmable Gate Array) 
technology. The circuit size of the translation unit can be 
assessed. 
 
6. RELATED WORK 
 Thumb [7] and MIPS16 [8] are designed to decrease 
program size by redesigning instruction set of the 
processor ARM and MIPS which are 32-bit RISC 
processors to 16-bit instruction sets.  These new 
instruction sets are able to work compatibly with the 
original processor cores. Compression ratios of both 
works are 0.70 and 0.60 respectively. 
 Code compression for RISC Processor (CCRP) [9] 
introduces a method to compress a program using 
Huffman algorithm to compress code and cache memory.  
The cache memory stores an instruction before it is used 
by the processor unit.  The compression ratio of this work 
is 0.73. 
 Lefurgy [10] observed the compiler’s method of 
translation and found that some sequences of instructions 
are redundant.  Therefore those repetitions are replaced 
with codewords which used fewer bits. These codeword 
are stored in a dictionary. When the processor executes a 
codeword, the decompressor will retrieve the sequence 
from the dictionary.  The experiments are performed on 3 
types of processors: PowerPC, ARM and i386.  The 
compression ratios of each processor are 0.61, 0.66 and 
0.74 respectively. 
 IBM uses the technique, called “CodePack” [11, 12], 
to compress the program in PowerPC. It applied two 
compression concepts: dictionary compression in [10] 
and decompression on the cache in [9]. Compression ratio 
of this work is 0.60. However in [13] the reported 
performance of the CodePack system is that it is slowing 
down the operation by 0.14-0.18 times. 
 Ernst [14] introduced BRISC based on two concepts 
operand specialization and opcode combination. BRISC 
is implemented as an interpreter.  The result of the 
experiment showed 0.53-0.69 compression ratio.  
However, the interpreter slowed down the system by 9.6-
15.4 times compared to the execution of the 
uncompressed code. 
 These works demonstrate the effectiveness of code-
size reduction using various schemes of code 
compression and compiler optimizations. The down side 
is the run-time overhead associated with the interpreter. 
The translation unit proposed in this paper should prove 
to be effective in terms of small run-time overhead. The 
compressed ratio achieved by the proposed method is 
comparable to the existing methods. 
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