
A stack-based processor for resource efficient embedded systems

Alongkot Burutarchanai, Phanupan Nanthanavoot, Chatchawit Aporntewan, Prabhas
Chongstitvatana

Department of Computer Engineering Chulalongkorn University, Bangkok 10330, Thailand
g46abl@cp.eng.chula.ac.th, g45pnt@cp.eng.chula.ac.th u37cap@cp.eng.chula.ac.th,

prabhas@chula.ac.th

Abstract

This work proposes the design of a 16-bit stack-
based processor. It is aimed for a limited resource
embedded system. The processor data path is simple.
The instruction set is minimal. The proposed design
has been realized on a FPGA device. The measurement
on the required resource and performance based on
the test suite aimed for the smart card applications
indicates the suitability of the proposed design. The
processor requires 6497 equivalent gates. Its maximum
frequency is 45 MHz. In terms of code size, it is
comparable to commercial 8-bit processors.

1. Introduction

In the last decade the progress of microprocessor
design has been phenomenal. Performance rises
according to Moore's law. The performance is double
every 18 months. Performance is the key driving force
for the progress of the last decade. However, the new
applications have shifted the design landscape once
again to low power, portable devices [1]. Embedded
systems are emerging as a major driving force for
computing devices. The much larger volume of
demand makes embedded systems a dominant factor in
industries. The constraints for embedded systems are
power requirement. At the same time the amount of
resource for a portable device is limited.

The aim of this work is to explore a design for a
very limited resource constraint. The intended
application for this processor is the smart card. The
resource to implement a processor and the available
memory are limited. The main consideration is to
minimize the required resource. Performance issue is
secondary. To reduce the requirement on memory, the
machine code based on stack instruction is
investigated.

Conventional machine code is not the most compact
form to represent an executable code. The intermediate
code for a virtual machine is usually much smaller
because of its higher semantic content. One of the most
popular form of intermediate code is based on stack
addressing. A stack machine code is very compact due
to its use of stack which does not required addressing
bits. Majority of instructions thus do not required the
operand in the instruction as it is implicit in the stack.

2. Processor design
2.1 Data path

The processor has 16-bit data width. It consists of
four registers and a simple ALU. The registers are
assigned special functions corresponded to the function
of instruction set. The data path is purposefully
constraint to be minimal and hence consumes very
little resource.

2.2 Instruction Set
The instruction set is byte-coded. It consists of

three types of instruction formats: zero, 8-bit and 16-bit
operands. The opcode is 8 bits. There are 25
instructions divided into 4 groups: load/store from
memory and local variables, arithmetic and logic,
control flow. The arithmetic and logic group included
usual arithmetic instructions, shift, and complete set of
bitwise logic instructions. The control flow group
contained a high level CALL and RET which create
and destroy the activation record.

The four registers are: TOS (top of stack cache), SP
(stack pointer), FP (frame pointer) and PC (program
counter). The binary operators take two elements from
top of stack. The unary operators operate on top of
stack (TOS). LD and ST access to the global memory.
GET and PUT access the local variable in the current
activation record pointed by FP register. CALL has a
high semantic content as it creates the new activation

record and instantiates the actual parameters then
passes the control to the caller. RET and RETV restore
the previous activation record and return to the caller.
RETV also pushes a return value to the top of stack of

the caller. This instruction set tends toward
minimalism.

Register File

ALU

A

B

alu_opcode

FF
Register

IR
Register

MAR
Register

Buffer
Register

reg_reset

reg_mode

reg_load

ff_load

alu_branch

ir_mode

ir_load

ir_opcode

mar_mode

mar_load

buf_ena

mux16_sel

8

2

16

16

16

16

16

data_bus[15:8]

data_bus[7:0]

temp_bus

data_bus

address_bus

Figure 1 the data path to the stack-based processor

The choice of instruction set for a stack machine
has a close relationship to a high level language. The
"semantic gap" between its machine language and a
high level language is narrow. One can almost write a
stack machine language directly from a high level
language source program. The higher semantic content,
especially on the function call and parameter passing,
helps to reduce the size of code.

See the following program:

//sum from a to b, s is a local
to sum a b | s =
 s = 0
 while a <= b
 s = s + a
 a = a + 1
 s
to main =
 print sum 1 10

It can be written in a machine code for the proposed
stack machine as follows:

:sum
LIT 0, PUT s,
:loop
GET a, GET b, LE, JF exit,
GET s, GET a, ADD, PUT s,
GET a, LIT 1, ADD, PUT a, JMP loop
:exit
GET s, RETV

:main
LIT 1, LIT 10, CALL sum, SYS print
end

The instruction fetch operates on byte basis. The
stack manipulation is on 16-bit data. The stack data
structure is stored on the memory. The basic cycle of
fetch and execute a simple instruction takes 18 clocks.
The complex instruction takes a large number of
clocks, such as CALL takes 59 clocks. (see Fig.2)

The design is realized on a FPGA. Using the
Xilinx device and their synthesizer software, WebPack,
the total equivalent gate count is 6497. The maximum
frequency is 45 MHz. The control unit consumes more
than half of the resource. This indicates the area for
future optimization.

3. Measurements

To test the processor, it is used to run the test suite.
The test suite is based on the intended application of
this processor, the smart card. The test suite composed
of AES (Advanced Encryption Standard) block cipher
[2], OCB (offset code book encryption) [3], and
fibonacci (heavily recursive call). The performance is
measured on AES compared to the reported figures
from [2] (see Table 1). The stack processor uses
317,346 clocks for (128, 128) bit key versus the 8-bit
Intel 8051 processor 4,065 x 12 clocks and the 8-bit
Motorola 68HC08 processor 8,390 x 1 clocks. In order
to improve performance of the stack processor, two
additional instructions are provided for array indexing.
The result is 284,108 clocks for (128, 128) key, an
improvement of 10% (see Table 1, stack2). Other
tested program is the fibonacci program which uses
CALL instruction heavily. The stack processor uses
54,089 clocks to calculate fib(7) (code size 52 bytes).
In term of the code size, the stack processor has the
advantage. The executable code for the stack
processor is smaller than other processors in AES
cipher (see Table 1). In the OCB application, the code
size is 7,537 bytes versus the executable machine code
size of 22,048 bytes on a PC.

In terms of resource, the proposed design is
compared with two 16-bit general purpose processors
from the opencores community: C16 and T80 [4]. All
designs are implemented on Xilinx Spartan2 devices,
XC2S100 (100,000 gates) in order to compare the
required resource in the same metric. C16 cannot be
synthesised on the chosen device due to lacking of
RAM block, in other words, C16 requires more
resource than available on the FPGA chip. T80 uses
15,009 equivalent gates. Its maximum frequency is 33
MHz. The proposed design fared very well as it uses
less than half the resource of T80. (See Table 2)

Table 1 Performance Comparison of the stack
processor to Intel 8051 and Motorola 68HC08

for (128, 128) bits key AES cipher
processor Clocks code size (bytes)
stack 317,346 677
stack2 284,108 650
8051 4,065 x 12 768
68HC08 8,390 x 1 919

Table 2 Resource comparison of each CPU
Processor Frequency Equivalence gate
Stack 45 MHz 6,497
C16 40 MHz N/A
T80 33 MHz 15,009

4. Related work

The most well-known stack virtual machine is Java
Virtual Machine (JVM) [5] as it is embedded into most
browser. One commercial processor design that has its
ISA based on stack-based instructions is PicoJava chip
[6]. [7] Designed a hardware translation unit to run
Java bytecode on a register-based machine with good
performance. This is another alternative to using a
stack-based machine like our proposal. There are
volume of work on customized instruction set for
specific applications for example [8, 9] including using
programmable gate array for realizing these instruction
set embedded in an ordinary processor [10]. The
flexibility of customizing instruction set for specific
applications has been commercialized by a number of
companies for example Xtensa [11]. For multimedia
work load the most well-known is MMX instruction
from Intel [12]. These are aimed for high performance.
The design proposed here has a different goals, it is
aimed to be resource efficient.

5. Discussion

The design presented here of a stack-based
processor achieved the intended objective, the efficient
use of resource, adequately. Implementing on a Xilinx
FPGA device, it consumes 6,497 equivalent gates with
the maximum frequency of 45 MHz. In terms of code
size, it is comparable to the class of commercial 8-bit
processors. The advantages of a stack-based processor
are its simplicity and its small code size has been
demonstrated. In terms of performance, it is still lagged
behind commercial register-based processors.
However, the performance of the proposed processor
can be improved in several ways. A number of special
instructions can be added to its instruction set.
Observing the profile of the frequency of each
instruction execution, the additional addressing mode
and multi-bit shift will improve the performance.
Implementing load index and shift 2, 4 bits altogether
results in running the AES benchmark with 277,157
clocks (12.6% faster). Performing code generation
optimization will improve this figure by another 10-
20%. Other special instruction can be considered. The
prime candidate for AES applications is the
multiplication in GF2 field which is used heavily. It
can be implemented in hardware using a simple left
shift and conditional bitwise exclusive-or. It can also
be implemented as a sequence of control using the
existing data path. The control unit is not optimized in
this implementation. Its speed can be improved and its
size can be reduced. Other advantage of customized
instruction set is that many optimizations which are not

feasible with a commercial processor can be
performed. For example, to go for an extremely
compact code size, a special instruction encoding can
be used which can contain two instructions in one byte
[13].

6. References

[1] C. Kozyrakis and D. Patterson, "A new direction
for computer architecture research", IEEE computer,
Nov. 1998, pp.24-32.
[2] J. Daemen and V. Rijmen, "The Rijndael Block
Cipher: AES proposal", 1999
[3] P. Rogaway, M. Bellare, J. Black, And T. Krovetz,
"OCB: A Block-Cipher Mode Of Operation For
Efficient Authenticated Encryption", Proc. 8th CCS,
pp. 196-205, ACM, 2001.
[4] www.opencores.org
[5] B. Joy (Ed), G. Steele, J. Gosling, G. Bracha, Java
(TM) Language Specification (2nd Ed), Addison
Wesley Pub., 2000.
[6] H. McGhan and M. O'Conner, "PicoJava : a direct
execution engine for Java bytecode", IEEE Computer,
Vol.31 No. 10, 1998.
[7] R. Radhakrishnan, R. Bhargava and L. John,
Improving Java Performance Using Hardware
Trasnslation, In Proceedings of 15th ACM
international Conference on Supercomputing, pages
427-439, 2001.
[8] R. Leupers and J. Elste and B. Landwehr,
"Generation of interpretive and compiled instruction
set simulators", Proc. of the Asia and South Pacific
Design Automation Conference, Jan. 1999.
[9] S. Pees, A. Hoffmann, V. Zivojnovic and H. Meyr,
"LISA - Machine Description Language for Cycle-
Accurate Models of Programmable DSP
Architectures", Design Automation Conference, 1999,
pp. 933-938.
[10] T. Glokler and S. Bitterlich, "Power Efficient
Semi-Automatic Instruction Encoding For Application
Specific Instruction Set Processors", ICASSP, 1999.
[11] R. Gonzalez, "Xtensa: a configurable and
extensible processor", IEEE Micro, March/April 2000,
p.60
[12] MMX technology, http://developer.intel.com
[13] V. Kotrajaras, P. Chongstitvatana, "Nibbling Java
byte code for resource-critical devices", National Conf.
of Computer Science and Engineering, Thailand, 2003.

Fig. 2 the control unit states for some
instructions

.

