
1-4244-0023-6/06/$20.00 ©2006 IEEE CIS 2006

Evolutionary Fuzzy Logic Controller Schemes
Suitable for the Simple Automatic Design

Kidchop Waiyasusri
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

47718076@student.netserv.chula.ac.th

Prabhas Chongstitvatana
Department of Computer Engineering,

Chulalongkorn University
Bangkok, Thailand

prabhas@chula.ac.th

Abstract— This paper proposes three styles of the
Evolutionary Fuzzy Logic Controller (EFLC) scheme, which are
adapted from the Genetic-based Fuzzy Logic Controller (GFLC)
proposed in [1]. The main idea of EFLC is the simple 4th order
polynomial equation usages for input-output relationship
calculations instead of fixed-membership function calculation
style in the original GFLC. Although the usage of polynomial
equations makes the proposed EFLC to have more parameters
than the GFLC, the EFLC has more flexible adaptation/tuning
capability and can be adapted to other applications, such as the
fuzzy modeling problem. In addition, the proposed scheme still be
suitable for simple automatic parameter tuning techniques, such
as (1+1)-ES, and have low computation burden. The performance
of the proposed scheme comparing with the GFLC is shown by
two different experiments: the automatic controllers tuning and
the fuzzy modeling of three-dimensional surfaces. The results
show that the EFLC can be working well as the controller, and
also can be applied to the fuzzy modeling problem.

Keywords—Fuzzy, Controller, FLC, Evolutionary, ES,
Automatic Design

I. INTRODUCTION
Fuzzy logic Controller (FLC) is an application using the Fuzzy
Logic System (FLS) to model a controller from the
human/expert knowledge. The usage of fuzzy linguistic
variables and fuzzy rule-based approximate reasoning makes
FLC dealing well with uncertainties and nonlinearity of the
controlled system plant. However, to construct FLC, the good
knowledge, which leading to the appropriated membership
functions and fuzzy rules, is required. If there is not adequate
knowledge, the FLC design may be based on the trial-and-
error experiment making the FLC design much harder and the
good FLC may not be gotten.

The FLC design problem can be looking as the parameter
optimization problem; thus, to overcome this problem, there
are many approaches that have been developed to generate
FLC automatically using Evolutionary Algorithms (EA),
which is one of the powerful intelligent search/optimization
technique that suited to complex problem [2]-[9].
Furthermore, there are some works trying to simplify the
automatic design process by minimizing the number of FLC’s
parameters [1], [2]. One of those works is the Genetic-based

Fuzzy Logic Controller (GFLC) scheme, which is designed to
control the speed of motor and has just three parameters to be
tuned [1].

The main processes of the GFLC are to transform two
inputs of the controller, error and its derivative (change in
error), to be a vector in polar coordinate form and then use the
fixed-membership function style to calculate the controller’s
output. The detail of GFLC is discussed later in Section II.

Although the GFLC scheme can reduce the number of
parameter to be just three, the fixed-membership function style
of the controller may be not suitable for some types of the
controlled system plant. Thus, in this paper, three styles of the
evolutionary fuzzy logic controller (EFLC) scheme, adapted
from the GFLC scheme, are presented.

The main objective of the EFLC scheme is to construct the
FLC system that is suitable for simple automatic design, such
as Evolutionary Strategies (ES) [10], and can be applied to
wider range of problem, not just only for the controller design
problem. The EFLC scheme is described in Section III, and the
experiment results comparing the performance of EFLC and
GFLC are shown in Section IV.

II. GENETIC-BASED FUZZY LOGIC CONTROLLER SCHEME

Giving that)(ke ,)(kde are the error signals and its
derivative respectively ,)(kU is the stabilizing output and

)1()()(−+= kUkUku is the controller output at time step k ,
the GFLC scheme can be described as following calculation
steps:

Step 1: Compute the scaled change of error,)(' kde , using

 aFkdekde).()(' = (1)

Step 2: Calculate)(kR and)(kθ using

22)(')()(kdekekR += (2)

))(/)('(tan)(1 kekdek −=θ (3)

Step 3: Compute the value of membership function)(θNT and
)(θPT as follows (see Fig. 1(a)),

≤<−
≤<

≤<−
≤≤

=

πθπππθ
πθπ

πθππθπ
πθ

θ

22/3/)2/3(2
2/30

2//)(2
2/01

)(NT (4)

≤<−
≤<

≤<−
≤≤

=

πθππθπ
πθπ

πθπππθ
πθ

θ

22/3/)2(2
2/31

2//)2/(2
2/00

)(PT (5)

Step 4: Determine the gain value)(kGc (see Fig. 1(b)),

>∀
≤∀

=
r

rr
c DkR

DkRDkR
kG

)(0.1
)(/)(

)((6)

Step 5: Compute the stabilizing output)(kU using

max)]()()[()(UTTkGkU PNc θθ −= (7)

It can be seen from these calculation steps that the main
tuning parameters of the GFLC are aF , rD and maxU . The
function of these parameters may be described as follow:

- aF is used to scale)(kde input signal to the appropriated
level, which is related to represent the relationship between
two controller inputs.

- rD is used to determine the controller output signal slope
related to the magnitude ()(kR) of the controller inputs.

- maxU is using as the maximum value of the controller
output signal.

III. EVOLUTIONARY FUZZY LOGIC CONTROLLER
SCHEME

From the GFLC scheme detail in the previous section, we
can see that the rule part of the GFLC is hidden in

)]()([θθ PN TT − term and)(kGc function. The
)]()([θθ PN TT − term acts mainly as the direction rule, while

)(kGc function acts as the magnitude rule. However, the three
tuning parameters of the controller are quite not involved in
those rule terms. The only parameter that has effect with the
rule terms is rD that determined the slope of controller
output, while aF and maxU just function as the normal scaling
parameters. This let the GFLC acting like the fixed-rule FLC,
as same as the FLC proposed in [2], leading to the low flexible
controller system and obviously can not be applied to other
applications.

To overcome this problem, we propose the Evolutionary
Fuzzy Logic Controller (EFLC) that modifies the GFLC
scheme by replacing the calculation step 3 and 5 as follows:

Step 3N1: Calculate)(θT using

 3
3

2
210)(θθθθ ccccT +++= (8)

when]1,1[)(−∈θT

Step 5N1: Compute the stabilizing output)(kU using

max)()()(UTkGkU c θ= (9)

These replacements make the EFLC to have four more
parameters to be tuned: 0c , 1c , 2c and 3c , or totally seven
parameters. The main objective of using 4th order polynomial
is to get more flexible controller structure with not too much
parameters. This EFLC style will be called “EFLC-1”.

Moreover, if we want to give more flexibility to the
controller structure, we can change the)(kGc in step 4 to be
polynomial equation as shown in equation (10) and change the
controller output calculation in step 5 to be (11). We will call
this system “EFLC-2”. The EFLC-2 has just two more
parameters than the EFLC-1 because of the reduction of
unused rD and maxU .

Step 4N2: Calculate)(kGc using

 3
3

2
210)(RcgRcgRcgcgtGc +++= (10)

Step 5N2: Compute the stabilizing output)(kU using

)()()(θTkGkU c= (11)

2/π π 2/3π π2

)(θNT)(θPT

θ

0.1

rD
)(kR

0.1

Figure 2. Membership functions for (a) θ (b) R .

(a)

(b)

Anyway, we can also adapted the EFLC-2 by adding the
limitation checking step for the gain value)(kGc after step
4N2 as shown below (step 4-1) to give an output-limitation
ability to the control scheme. We will call this adapted EFLC-
2 as “EFLC-3”. This scheme has totally 10 parameters for
tuning.

Step 4-1: Limit)(kGc using

<
>

=
0)(0
max)(max

)(
kGc

UkGcU
kGc (12)

EFLC-1, EFLC-2 and EFLC-3 scheme has 7, 9 and 10

tuning parameters respectively. These numbers of parameters
are more than the three parameters in the original GFLC, but
they still less than 15 parameters of the fixed-rule FLC
proposed in [2]. In addition, the experimental results in the
next section will show that the proposed EFLC schemes still
can be easy tuning by ES and give the better results than the
original GFLC.

IV. EXPERIMENTS AND RESULTS

A. Controller Design Experiment
For this controller design experiment, the closed-loop step

responses of three process plants, which are used as the test
plants in [2], [3], are also be observed in this paper.

Plant A:
2)4.1(

2)(
++

=
ss

sG A (13)

Plant B:
)2)(1(

2)(
++

=
ss

sGB (14)

Plant C:
)1.01(

1)(
ss

sGC +
= (15)

Firstly, we apply (1+1)-ES technique with maximum of 100

generations to automatic design/tuning the controller
parameters. The Integral-of-Time-multiplied Absolute-Error
(ITAE) is adopted to be the fitness function as following
equation:

∫=
T

dtterrortfitness
0

)(100 (16)

where dt is the sampling period
T is the total running time

The results of 5 runs for each FLC (GFLC, EFLC-1, EFLC-

2 and EFLC-3) tuning are shown in Table I. The simulation
are done in MATLAB with 0.01s sampling period and 10s
total simulation time.

From Table I, we can see that all of the proposed EFLCs

can do much better than the GFLC for Plant A and B. For
Plant C results, the original GFLC has the best average fitness
function value with low variation and EFLC-2 is the worse
one, but EFLC-1 and EFLC-3 have the better results for the
best fitness value results.

The Plant C results are very interesting because we can see
that EFLC-1, which has the closest structure to the GFLC, has
the good results and quite close to the GFLC’s results, while
EFLC-2 and EFLC-3, which have more flexible structure, can
not do quite well. These results may lead to the conclusion that
the GFLC has already had the appropriated structure to control
Plant C, which also making EFLC-1 can do well for Plant C.

TABLE I. THE RESULTS OF FLCS TUNING BY (1+1)-ES

Plant Fuzzy
System

Best
Fitness

Avg. Fitness Worst
Fitness.

GFLC 109.84 136.6 232.94
EFLC-1 23.56 84.67 215.36
EFLC-2 13.62 39.23 87.77

GA

EFLC-3 9.87 19.11 49.54
GFLC 37.98 49.84 67.91

EFLC-1 6.23 18.44 31.52
EFLC-2 6.83 24.95 51.06

GB

EFLC-3 9.03 24.24 65.22
GFLC 4.84 5.31 6.94

EFLC-1 3.15 6.42 13.8
EFLC-2 9.49 49.72 115.08

GC

EFLC-3 2.99 31.01 103.76

Next, we use)/(λρµ + -ES with only one standard deviation

(σ) to tune the parameters of FLCs. The setting of)/(λρµ + -
ES are: 2=== λρµ , intermediate recombination and the
maximum generations is 100. The results of 3 runs for each
FLCs are shown in Table II.

TABLE II. THE RESULTS OF FLCS TUNNING BY (λρµ +/)-ES

Plant Fuzzy
System

RUN1
Fitness

RUN2
Fitness

RUN3
Fitness

Avg.
Fitness

GFLC 113.93 113.28 117.48 114.89
EFLC-1 19.00 29.69 32.24 26.97
EFLC-2 9.35 5.52 12.48 9.12

GA

EFLC-3 25.81 15.78 9.49 17.03
GFLC 48.49 44.56 48.08 47.04

EFLC-1 25.85 28.69 39.53 31.36
EFLC-2 5.43 10.01 14.84 10.09

GB

EFLC-3 19.00 9.56 21.73 16.76
GFLC 4.85 4.84 4.86 4.85

EFLC-1 0.98 4.86 2.40 2.75
EFLC-2 20.74 40.26 7.14 22.71

GC

EFLC-3 15.1 17.34 20.58 17.67

The results of using)/(λρµ + -ES shows that the GFLC has
very low variation from run to run, while the proposed EFLCs
have a lot more variation, especially for EFLC-2 and EFLC-3.
This result can be easily explained by the more parameters and
flexibility of the EFLC-2 and EFLC-3 structure. In addition,
the results in Table II still lead to the same conclusion from
Table I that all of the proposed EFLCs can do much better

than the GFLC for Plant A and B. However, the results of
Plant C have one main difference: EFLC-1 is the best one for
Plant C, which may be the effect from the more complex
searching algorithm of)/(λρµ + -ES. This difference can lead
to deeper explanation for Plant C results: the GFLC has
already had the appropriated structure of gain value function

)(kGc to control Plant C, and the EFLC-1 that has more
flexible in)(θT part can be tuned to get the better control
result.

Figure 2. Example step response for Plant C with EFLC-1 controller

B. Fuzzy Modeling Problem Experiment
Because of the more flexible structure, we believe that the

proposed EFLCs can be applied to other problem, more over
than a controller design problem. In this experiment, we use
the proposed EFLCs and GFLC to model following three-
dimensional surfaces [4] (see Fig. 3):

]50,0[],5,5[,;),(1

22
1 ∈−∈+= fxyxyxyxfx (17)

]10,0[],1,0[,;
.2

),(22 ∈∈
+−

−
= fxyx

yxyx
xyxyxfx (18)

The inputs of the tested FLCs are changed to be x and

y instead of)(ke and)(kde respectively. The output of
FLCs is changed from)(kU to be),(' yxf . Moreover, we

will use)/(λρµ + -ES with the setting: 10,2 === λρµ ,
intermediate recombination and the maximum generations is
100, as the tuning algorithm. The fitness function for tuning is
the Mean Square Error (MSE) as shown in (19).

N

yxfyxfx
fitness

N

i
iiii∑

=
−

= 1

2')),(),((
 (19)

where i is the index of input data set
 N is the number of training point

TABLE III. THE RESULTS OF SURFACE MODELING PROBLEM

Func. Fuzzy
System

RUN1
Fitness

RUN2
Fitness

RUN3
Fitness

Avg.
Fitness

GFLC 40.84 40.85 40.84 40.84
EFLC-1 31.34 24.17 24.09 26.53
EFLC-2 2.77 6.60 1.70 3.69

fx1

EFLC-3 26.36 33.32 56.50 38.73
GFLC 13.07 13.07 13.07 13.07

EFLC-1 7.11 13.07 11.86 10.68
EFLC-2 10.54 7.62 7.19 8.45

fx2

EFLC-3 12.34 12.05 8.18 10.86

The experimental results of 3 runs for each FLCs are shown

in Table III. It is obvious that the GFLC has the worse result
because of its fixed-rule style. In addition, from Table III, it
can be seen that EFLC-2 has the best result, which may be the
effect of its flexible scheme without the output limitation. The
examples of graphical results are shown in Fig. 4. From Fig. 4,
we can observe that EFLC-2 can do well in modeling 1fx but
not for 2fx . This result happens because equation of 1fx is
equivalent to the magnitude rule part ()(kGc) of EFLC-2,
while 2fx may be too complex to the proposed EFLC
structures.

Figure 3. Graphical representations of (a) 1fx (b) 2fx

(a)

(b)

V. CONCLUSION
This paper presents three styles of the EFLC scheme

adapted from the GFLC. All of the proposed EFLC can be
done well in the automatic controller design problem with just
an easy ES technique as the tuning algorithm. Moreover, the
proposed schemes can also be used in the fuzzy modeling
problem quite well as shown in the experiments.

VI. FUTURE WORK
The structure of EFLC can be extended to deal with the

three-input problem. It may be done by transform the inputs to
be in the sphere coordinate form and apply the two-input
EFLC structure to calculate the direction rule path. Moreover,
it would be interesting to apply the EFLC to some real world
applications.

Figure 4. Example of the graphical results getting from EFLC-2 for

(a) 1fx (b) 2fx

APPENDIX
Evolutionary Strategies (ES) [10] are the techniques of

Evolutionary Algorithms (EA) that were developed by

Rechenberg and Schwefel to solve real-valued parameter
optimization problems. The first and simplest ES algorithm,
the so-called (1+1)-ES, was introduced with just two
individuals (populations) and only one mutation operator.
Then, it was developed to have more searching/optimization
ability by adding more parents and offspring, recombination
stage and self-adaptation for mutation operator. Two ES
techniques referred in this paper, (1+1)-ES and)/(λρµ + -ES
with one self-adaptive strategy parameter (σ), are introduced
to give more understanding.

A. (1+1)-ES
In (1+1)-ES, there are just two individuals per generation,

one parent and one offspring. For each generation, the parent
individual is mutated to generate one offspring with the
mutation/strategy parameter, a standard deviation (σ). Giving
that >=< nxxx ,...,, 21parent , the mutation steps can be show
as follows:

Step 1: Calculate mutation step z ,

 ><=)1,0(),...,1,0(),1,0(. 21 nNNNσz (A-1)
where)1,0(iN are independent random samples from the

standard normal distribution

Step 2: Obtain offspring using,

zparentoffspring +>==< nyyy ,...,, 21 (A-2)

After mutation, we then select the best individual (best

fitness value) to be parent in next generation. Moreover, the
strategy parameter (σ) is also evolved by Rechenberg’s 1/5-
success rule:

=
<
>

=
5/1
5/1
5/1/

S

S

S

Pif
Pifa
Pifa

σ
σ

σ
σ (A-3)

where a is a constant : 185.0 << a
 SP is the success probability value:

G
G

P S
S = (A-4)

where SG is the number of generations that offspring is
better than parent

 G is the number of current generation

These steps are repeated until the solution is obtained or the

termination condition is true.

B.)/(λρµ + -ES with one self-adaptive σ

This kind of ES has µ parents and λ offspring for each

(a)

(b)

generation. One strategy parameter σ is added to individual
parameters to be evolved (mutated) together instead of using
1/5-success rule; thus, an individual is in the form:

>=< σ,,...,, 21 nxxxindividual (A-5)

Before mutation, ρ parent individuals are uniform-

randomly chosen from µ parents to be recombined. One type
of recombination is the intermediate recombination, which can
be shown as follow:

ρρρ

ρρρ

∑∑∑
====< 11

2
1

1

,...,, i
in

i
i

i
i xxx

r > (A-6)

where r is a recombined individual
 ijx are parameters of thi chosen individual

After that, an obtained recombined individual is mutated in

three steps:

Step 1: Mutate σ first,

))1,0(exp(' Nτσσ = (A-7)

where τ is the learning parameter: n/1∝τ

Step 2: Calculate mutation step z ,

><=)1,0(),...,1,0(),1,0(' 21 nNNNσz (A-8)

Step 3: Obtain offspring using,

zroffspring += (A-9)

The steps of recombination and mutation are repeated to get
λ offspring individuals, and then select the best µ
individuals from µ parents and λ offspring to be the parent
individual. The described steps are repeated until the solution
is obtained or the termination condition is true.

REFERENCES
[1] M.N. Uddin, M.A. Abido, M.A. Rahman, “Real-Time Performance

Evaluation of A Genetic-Algorithm-Based Fuzzy Logic Controller for
Motor Drives,” IEEE Trans. Industrial Applications, vol. 41, NO. 1, pp.
246-252, 2005.

[2] France Cheong, Richard Lai, “On Simplifying the Automatic Design of
a Fuzzy Logic Controller,” Proc. NAFIPS, pp. 481-487, 2002.

[3] T.Y. Huang, Y.Y. Chen, “Generation of a Fuzzy Logic Controller Using
Evolutionary Strategies,” IFSA World Congress and 20th NAFIPS Int.
Conf., pp. 269-274, Jul. 2001.

[4] Oscar Cordon, Francisco Herrera, “A Two-Stage Evolutionary Process
for Designing TSK Fuzzy Rule-Based Systems,” IEEE Trans. Systems,
Man, And Cybernatics-Part B: Cybernatics, vol. 29, NO. 6, pp. 703-715,
Dec. 1999.

[5] Frank Hoffman, “Evolutionary Algorithms for Fuzzy Control System
Design,” Proc. of THE IEEE, vol. 89, NO. 9, pp. 1318-1333, Sept. 2001.

[6] W.R. Hwang, W.E. Thompson, “Design of Intelligent Fuzzy Logic
Controllers Using Genetic Algorithms,” IEEE World Congress on
Computational Intelligence, Proc. Fuzzy Systems, vol. 2, pp.1383-1388,
Jun. 1994.

[7] Y.C. Chiou, L.W. Lan, “Genetic Fuzzy Logic Controllers,” IEEE Int.
Conf. Transportation Systems, pp. 200-205, Sept. 2002.

[8] K.B. Sim, K.S. Byun, D.W. Lee, “Design of Fuzzy Controller Using
Schema Coevolutionary Algorithm,” IEEE Trans. Fuzzy Systems, vol.
12, NO. 4, pp. 565-568, Aug. 2004.

[9] K. Shimojima, N.Kubota, T. Fukuda, “RBF Fuzzy Controller with
Virus-Evolutionary Genetic Algorithm,” IEEE Conf. Neural Networks,
vol. 2, pp. 1040-1043, Jun. 1996

[10] H.G. Beyer, H.P. Schwefel, “Evolutionary Strategies: A comprehensive
introduction,” Natural Computing 1, pp. 3-52, 2002.

