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Abstract— This paper proposes three styles of the 
Evolutionary Fuzzy Logic Controller (EFLC) scheme, which are 
adapted from the Genetic-based Fuzzy Logic Controller (GFLC) 
proposed in [1]. The main idea of EFLC is the simple 4th order 
polynomial equation usages for input-output relationship 
calculations instead of fixed-membership function calculation 
style in the original GFLC. Although the usage of polynomial 
equations makes the proposed EFLC to have more parameters 
than the GFLC, the EFLC has more flexible adaptation/tuning 
capability and can be adapted to other applications, such as the 
fuzzy modeling problem. In addition, the proposed scheme still be 
suitable for simple automatic parameter tuning techniques, such 
as (1+1)-ES, and have low computation burden. The performance 
of the proposed scheme comparing with the GFLC is shown by 
two different experiments: the automatic controllers tuning and 
the fuzzy modeling of three-dimensional surfaces. The results 
show that the EFLC can be working well as the controller, and 
also can be applied to the fuzzy modeling problem. 
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I.  INTRODUCTION  
Fuzzy logic Controller (FLC) is an application using the Fuzzy 
Logic System (FLS) to model a controller from the 
human/expert knowledge. The usage of fuzzy linguistic 
variables and fuzzy rule-based approximate reasoning makes 
FLC dealing well with uncertainties and nonlinearity of the 
controlled system plant. However, to construct FLC, the good 
knowledge, which leading to the appropriated membership 
functions and fuzzy rules, is required. If there is not adequate 
knowledge, the FLC design may be based on the trial-and-
error experiment making the FLC design much harder and the 
good FLC may not be gotten. 

The FLC design problem can be looking as the parameter 
optimization problem; thus, to overcome this problem, there 
are many approaches that have been developed to generate 
FLC automatically using Evolutionary Algorithms (EA), 
which is one of the powerful intelligent search/optimization 
technique that suited to complex problem [2]-[9].  
Furthermore, there are some works trying to simplify the 
automatic design process by minimizing the number of FLC’s 
parameters [1], [2]. One of those works is the Genetic-based 

Fuzzy Logic Controller (GFLC) scheme, which is designed to 
control the speed of motor and has just three parameters to be 
tuned [1]. 

The main processes of the GFLC are to transform two 
inputs of the controller, error and its derivative (change in 
error), to be a vector in polar coordinate form and then use the 
fixed-membership function style to calculate the controller’s 
output. The detail of GFLC is discussed later in Section II.  

Although the GFLC scheme can reduce the number of 
parameter to be just three, the fixed-membership function style 
of the controller may be not suitable for some types of the 
controlled system plant. Thus, in this paper, three styles of the 
evolutionary fuzzy logic controller (EFLC) scheme, adapted 
from the GFLC scheme, are presented. 

The main objective of the EFLC scheme is to construct the 
FLC system that is suitable for simple automatic design, such 
as Evolutionary Strategies (ES) [10], and can be applied to 
wider range of problem, not just only for the controller design 
problem. The EFLC scheme is described in Section III, and the 
experiment results comparing the performance of EFLC and 
GFLC are shown in Section IV. 

II. GENETIC-BASED FUZZY LOGIC CONTROLLER SCHEME 

Giving that )(ke , )(kde are the error signals and its 
derivative respectively , )(kU is the stabilizing output and 

)1()()( −+= kUkUku is the controller output at time step k , 
the GFLC scheme can be described as following calculation 
steps: 
 
Step 1: Compute the scaled change of error, )(' kde , using 
 

     aFkdekde ).()(' =             (1) 
 

Step 2: Calculate )(kR and )(kθ using 
 

22 )(')()( kdekekR +=           (2) 

))(/)('(tan)( 1 kekdek −=θ           (3) 
 



         

Step 3: Compute the value of membership function )(θNT and 
)(θPT as follows (see Fig. 1(a)), 
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Step 4: Determine the gain value )(kGc (see Fig. 1(b)), 
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Step 5: Compute the stabilizing output )(kU using 
 

max)]()()[()( UTTkGkU PNc θθ −=           (7) 
 

It can be seen from these calculation steps that the main 
tuning parameters of the GFLC are aF , rD  and maxU . The 
function of these parameters may be described as follow: 

- aF  is used to scale )(kde  input signal to the appropriated 
level, which is related to represent the relationship between 
two controller inputs. 

- rD  is used to determine the controller output signal slope 
related to the magnitude ( )(kR ) of the controller inputs. 

- maxU  is using as the maximum value of the controller 
output signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III. EVOLUTIONARY FUZZY LOGIC CONTROLLER 
SCHEME 

From the GFLC scheme detail in the previous section, we 
can see that the rule part of the GFLC is hidden in 

)]()([ θθ PN TT −  term and  )(kGc  function. The 
)]()([ θθ PN TT −  term acts mainly as the direction rule, while 

)(kGc  function acts as the magnitude rule. However, the three 
tuning parameters of the controller are quite not involved in 
those rule terms. The only parameter that has effect with the 
rule terms is rD  that determined the slope of controller 
output, while aF  and maxU  just function as the normal scaling 
parameters. This let the GFLC acting like the fixed-rule FLC, 
as same as the FLC proposed in [2], leading to the low flexible 
controller system and obviously can not be applied to other 
applications. 

To overcome this problem, we propose the Evolutionary 
Fuzzy Logic Controller (EFLC) that modifies the GFLC 
scheme by replacing the calculation step 3 and 5 as follows: 

 
Step 3N1: Calculate )(θT using 
 

      3
3

2
210)( θθθθ ccccT +++=           (8) 

when  ]1,1[)( −∈θT  
 
Step 5N1: Compute the stabilizing output )(kU using 
 

max)()()( UTkGkU c θ=             (9) 
 

These replacements make the EFLC to have four more 
parameters to be tuned: 0c , 1c , 2c  and 3c , or totally seven 
parameters. The main objective of using 4th order polynomial 
is to get more flexible controller structure with not too much 
parameters. This EFLC style will be called “EFLC-1”. 

Moreover, if we want to give more flexibility to the 
controller structure, we can change the )(kGc  in step 4 to be 
polynomial equation as shown in equation (10) and change the 
controller output calculation in step 5 to be (11). We will call 
this system “EFLC-2”. The EFLC-2 has just two more 
parameters than the EFLC-1 because of the reduction of 
unused  rD  and maxU . 

 
Step 4N2: Calculate )(kGc using 
 

   3
3

2
210)( RcgRcgRcgcgtGc +++=         (10) 

 
Step 5N2: Compute the stabilizing output )(kU using 
 

)()()( θTkGkU c=          (11) 
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Figure 2.  Membership functions for (a) θ  (b) R . 
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Anyway, we can also adapted the EFLC-2 by adding the 
limitation checking step for the gain value )(kGc  after step 
4N2 as shown below (step 4-1) to give an output-limitation 
ability to the control scheme. We will call this adapted EFLC-
2 as “EFLC-3”. This scheme has totally 10 parameters for 
tuning. 

 
Step 4-1: Limit )(kGc using 
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EFLC-1, EFLC-2 and EFLC-3 scheme has 7, 9 and 10 

tuning parameters respectively. These numbers of parameters 
are more than the three parameters in the original GFLC, but 
they still less than 15 parameters of the fixed-rule FLC 
proposed in [2]. In addition, the experimental results in the 
next section will show that the proposed EFLC schemes still 
can be easy tuning by ES and give the better results than the 
original GFLC.  

IV. EXPERIMENTS AND RESULTS 

A. Controller Design Experiment 
For this controller design experiment, the closed-loop step 

responses of three process plants, which are used as the test 
plants in [2], [3], are also be observed in this paper. 
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Firstly, we apply (1+1)-ES technique with maximum of 100 

generations to automatic design/tuning the controller 
parameters. The Integral-of-Time-multiplied Absolute-Error 
(ITAE) is adopted to be the fitness function as following 
equation: 

 

∫=
T

dtterrortfitness
0

)(100         (16) 

where  dt  is the sampling period 
T   is the total running time 

 
The results of 5 runs for each FLC (GFLC, EFLC-1, EFLC-

2 and EFLC-3) tuning are shown in Table I. The simulation 
are done in MATLAB with 0.01s sampling period and 10s 
total simulation time. 

From Table I, we can see that all of the proposed EFLCs 

can do much better than the GFLC for Plant A and B. For 
Plant C results, the original GFLC has the best average fitness 
function value with low variation and EFLC-2 is the worse 
one, but EFLC-1 and EFLC-3 have the better results for the 
best fitness value results.  

The Plant C results are very interesting because we can see 
that EFLC-1, which has the closest structure to the GFLC, has 
the good results and quite close to the GFLC’s results, while 
EFLC-2 and EFLC-3, which have more flexible structure, can 
not do quite well. These results may lead to the conclusion that 
the GFLC has already had the appropriated structure to control 
Plant C, which also making EFLC-1 can do well for Plant C. 

TABLE I.  THE  RESULTS OF FLCS TUNING BY (1+1)-ES 

Plant Fuzzy 
System 

Best 
Fitness 

Avg. Fitness Worst 
Fitness. 

GFLC 109.84 136.6 232.94 
EFLC-1 23.56 84.67 215.36 
EFLC-2 13.62 39.23 87.77 

GA 

EFLC-3 9.87 19.11 49.54 
GFLC 37.98 49.84 67.91 

EFLC-1 6.23 18.44 31.52 
EFLC-2 6.83 24.95 51.06 

GB 

EFLC-3 9.03 24.24 65.22 
GFLC 4.84 5.31 6.94 

EFLC-1 3.15 6.42 13.8 
EFLC-2 9.49 49.72 115.08 

GC 

EFLC-3 2.99 31.01 103.76 
 
Next, we use  )/( λρµ + -ES with only one standard deviation 

(σ ) to tune the parameters of FLCs. The setting of )/( λρµ + -
ES are: 2=== λρµ  , intermediate recombination and the 
maximum generations is 100. The results of 3 runs for each 
FLCs are shown in Table II. 

TABLE II.  THE RESULTS OF FLCS TUNNING BY ( λρµ +/ )-ES 

Plant Fuzzy 
System 

RUN1 
Fitness 

RUN2  
Fitness 

RUN3  
Fitness 

Avg. 
Fitness 

GFLC 113.93 113.28 117.48 114.89 
EFLC-1 19.00 29.69 32.24 26.97 
EFLC-2 9.35 5.52 12.48 9.12 

GA 

EFLC-3 25.81 15.78 9.49 17.03 
GFLC 48.49 44.56 48.08 47.04 

EFLC-1 25.85 28.69 39.53 31.36 
EFLC-2 5.43 10.01 14.84 10.09 

GB 

EFLC-3 19.00 9.56 21.73 16.76 
GFLC 4.85 4.84 4.86 4.85 

EFLC-1 0.98 4.86 2.40 2.75 
EFLC-2 20.74 40.26 7.14 22.71 

GC 

EFLC-3 15.1 17.34 20.58 17.67 
 

The results of using )/( λρµ + -ES shows that the GFLC has 
very low variation from run to run, while the proposed EFLCs 
have a lot more variation, especially for EFLC-2 and EFLC-3. 
This result can be easily explained by the more parameters and 
flexibility of the EFLC-2 and EFLC-3 structure.   In addition, 
the results in Table II still lead to the same conclusion from 
Table I that all of the proposed EFLCs can do much better 



         

than the GFLC for Plant A and B. However, the results of 
Plant C have one main difference: EFLC-1 is the best one for 
Plant C, which may be the effect from the more complex 
searching algorithm of )/( λρµ + -ES. This difference can lead 
to deeper explanation for Plant C results: the GFLC has 
already had the appropriated structure of gain value function 

)(kGc  to control Plant C, and the EFLC-1 that has more 
flexible in )(θT  part can be tuned to get the better control 
result. 

 
Figure 2.  Example step response for Plant C with EFLC-1 controller 

 

B. Fuzzy Modeling Problem Experiment 
Because of the more flexible structure, we believe that the 

proposed EFLCs can be applied to other problem, more over 
than a controller design problem. In this experiment, we use 
the proposed EFLCs and GFLC to model following three-
dimensional surfaces [4] (see Fig. 3):   
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The inputs of the tested FLCs are changed to be x and 

y instead of )(ke  and )(kde  respectively. The output of 
FLCs is changed from )(kU  to be ),(' yxf . Moreover, we 

will use )/( λρµ + -ES with the setting: 10,2 === λρµ , 
intermediate recombination and the maximum generations is 
100, as the tuning algorithm. The fitness function for tuning is 
the Mean Square Error (MSE) as shown in (19). 
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where i  is the index of input data set 
 N  is the number of training point 

TABLE III.  THE RESULTS OF SURFACE MODELING PROBLEM 

Func. Fuzzy 
System 

RUN1  
Fitness 

RUN2  
Fitness 

RUN3  
Fitness 

Avg. 
Fitness 

GFLC 40.84 40.85 40.84 40.84 
EFLC-1 31.34 24.17 24.09 26.53 
EFLC-2 2.77 6.60 1.70 3.69 

fx1 

EFLC-3 26.36 33.32 56.50 38.73 
GFLC 13.07 13.07 13.07 13.07 

EFLC-1 7.11 13.07 11.86 10.68 
EFLC-2 10.54 7.62 7.19 8.45 

fx2 

EFLC-3 12.34 12.05 8.18 10.86 
 
The experimental results of 3 runs for each FLCs are shown 

in Table III. It is obvious that the GFLC has the worse result 
because of its fixed-rule style. In addition, from Table III, it 
can be seen that EFLC-2 has the best result, which may be the 
effect of its flexible scheme without the output limitation. The 
examples of graphical results are shown in Fig. 4. From Fig. 4, 
we can observe that EFLC-2 can do well in modeling  1fx  but 
not for 2fx . This result happens because equation of 1fx  is 
equivalent to the magnitude rule part ( )(kGc ) of EFLC-2, 
while 2fx  may be too complex to the proposed EFLC 
structures. 

 

 
Figure 3.  Graphical representations of (a) 1fx  (b) 2fx  

(a)

(b)



         

V. CONCLUSION 
This paper presents three styles of the EFLC scheme 

adapted from the GFLC.  All of the proposed EFLC can be 
done well in the automatic controller design problem with just 
an easy ES technique as the tuning algorithm. Moreover, the 
proposed schemes can also be used in the fuzzy modeling 
problem quite well as shown in the experiments.   

VI. FUTURE WORK 
The structure of EFLC can be extended to deal with the 

three-input problem. It may be done by transform the inputs to 
be in the sphere coordinate form and apply the two-input 
EFLC structure to calculate the direction rule path. Moreover, 
it would be interesting to apply the EFLC to some real world 
applications.  

 

 

 
Figure 4.  Example of the graphical results getting from EFLC-2 for            

(a) 1fx  (b) 2fx  

APPENDIX 
Evolutionary Strategies (ES) [10] are the techniques of 

Evolutionary Algorithms (EA) that were developed by 

Rechenberg and Schwefel to solve real-valued parameter 
optimization problems. The first and simplest ES algorithm, 
the so-called (1+1)-ES, was introduced with just two 
individuals (populations) and only one mutation operator. 
Then, it was developed to have more searching/optimization 
ability by adding more parents and offspring, recombination 
stage and self-adaptation for mutation operator. Two ES 
techniques referred in this paper, (1+1)-ES and )/( λρµ + -ES 
with one self-adaptive strategy parameter (σ ), are introduced 
to give more understanding.  

A. (1+1)-ES 
In (1+1)-ES, there are just two individuals per generation, 

one parent and one offspring. For each generation, the parent 
individual is mutated to generate one offspring with the 
mutation/strategy parameter, a standard deviation (σ ). Giving 
that >=< nxxx ,...,, 21parent , the mutation steps can be show 
as follows: 

 
Step 1: Calculate mutation step z , 
 

    ><= )1,0(),...,1,0(),1,0(. 21 nNNNσz       (A-1) 
where )1,0(iN  are independent random samples from the  

standard normal distribution 
 

Step 2: Obtain offspring using, 
 

zparentoffspring +>==< nyyy ,...,, 21       (A-2) 
 
After mutation, we then select the best individual (best 

fitness value) to be parent in next generation. Moreover, the 
strategy parameter (σ ) is also evolved by Rechenberg’s 1/5-
success rule: 
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where a   is a constant : 185.0 << a  
 SP  is the success probability value: 
 

G
G

P S
S =                        (A-4) 

where SG   is the number of generations that offspring is  
better than parent 

 G     is the number of current generation 
 
These steps are repeated until the solution is obtained or the 

termination condition is true. 

B. )/( λρµ + -ES with one self-adaptive σ  

This kind of ES has µ  parents and λ  offspring for each 

(a) 

(b) 



         

generation. One strategy parameter  σ  is added to individual 
parameters to be evolved (mutated) together instead of using 
1/5-success rule; thus, an individual is in the form:  

 
>=< σ,,...,, 21 nxxxindividual                (A-5) 

 
Before mutation, ρ  parent individuals are uniform-

randomly chosen from µ  parents to be recombined. One type 
of recombination is the intermediate recombination, which can 
be shown as follow: 
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where r    is a recombined individual 
 ijx  are parameters of thi chosen individual 
 
After that, an obtained recombined individual is mutated in 

three steps: 
 

Step 1: Mutate σ  first, 
 

))1,0(exp(' Nτσσ =           (A-7) 

where τ  is the learning parameter: n/1∝τ  
 
Step 2: Calculate mutation step z , 
 

><= )1,0(),...,1,0(),1,0(' 21 nNNNσz      (A-8) 
 

Step 3: Obtain offspring using, 
 

zroffspring +=             (A-9) 
 

The steps of recombination and mutation are repeated to get 
λ  offspring individuals, and then select the best µ  
individuals from µ  parents and λ  offspring to be the parent 
individual. The described steps are repeated until the solution 
is obtained or the termination condition is true. 
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