
32

Solving One-Million-Bit Problems using LZWGA
Naris Kunasol, Worasait Suwannik*, and Prabhas Chongstitvatanat

*Faculty of Science
Kasetsart University, Bangkok, Thailand
Tel: 66-2-942-8026; fax: 66-2-942-8488

E-mail: g4764228@ku.ac.th and worasait.s@ku.ac.th
tChulalongkorn University, Bangkok, Thailand

Tel: 66-2-218-6983, E-mail: prabhas@chula.ac.th

Abstract- To solve a problem using Genetic Algorithm (GA),
a solution must be encoded into a binary string. The length of
this string represents the size of the problem. As the length of
the binary string increases, the size of the search space also
increases at an exponential rate. To reduce the search space, one
approach is to use a compressed encoding chromosome. This
work proposes LZWGA that used compressed chromosomes.
An LZWGA chromosome has to be decompressed using an LZW
decompression algorithm before its fitness can be evaluated.
The paper reports how to solve one-million-bit OneMax, Royal
Road and Trap functions using LZWGA.

The search space of the original problem is 21000000 or about
9.9ox1o3"1"29 points. When using a compressed encoding, the
search space was reduced to 8.37x10166717 points. The result
from the experiment shows that it is practical to solve the
problem of this size with the proposed method.

I. INTRODUCTION

GENETIC Algorithm (GA) is an algorithm inspired by
Jnatural evolution Ref. [1]. To solve a problem using

GA, a candidate solution is encoded as a chromosome. For a
binary encoding, a chromosome is encoded as a fixed length
binary string. GA searches in the space of this representation.
The length of a chromosome is related to the size of the
search space, for n-bit chromosomes the search space is 2n
points. When n is large, the computational time becomes
very long.

There are some approaches to reduce a search space. One
approach is to apply a heuristic in an evolution process. In
Ref. [2], the specific type of crossover that preserves some
constraints can beneficially reduce the search space. The
result shows that the proposed crossover can find better
solution for a flow shop scheduling problem.

Another approach to reduce the search space is by using
compressed encoding. In Compressed GA Ref. [3], a
chromosome is represented using a compressed encoding
format similar to run-length encoding. The result shows that
Compressed GA uses 805 times less fitness evaluations than
Simple GA when solving 128-bit OneMax problem.
To use Compressed GA, an appropriate number of bits of

the repetition times (the run length) has to be specified. If the
number of bits is too low or too high the effectiveness of
compression is suffered. To overcome this problem, Kunasol
et. al. Ref. [4] proposed LZWGA that used a compressed

encoding that can be decompressed using Lempel-Ziv-Welch
(LZW) decompression algorithm. The result shows that
LZWGA outperforms Compressed GA for 2048-bit OneMax
problem.

This paper extends the preliminary work in Ref. [4] by
investigating LZWGA for a very large problem size. We
present how LZWGA is used to solve one-million-bit
OneMax, Royal Road, and Trap problems. The one-million-
bit problem has an enormous search space. The search space
of this problem is 21000000 or 9.90x 10301029 points. Solving the
problem of this size using any canonical GA is not practical.
Using LZWGA, the search space is reduced dramatically.
Therefore, the problem can be solved in reasonable amount of
time.

The organization of this paper is as follows. Section 2
gives an overview of LZW algorithm and describes LZW
decompression algorithm. Section 3 explains LZWGA.
Section 4 explains the experiment on solving one-million-bit
OneMax, Royal Road, and Trap functions. Section 5 provides
a discussion of the results. Finally, Section 6 concludes the
paper.

II. LEMPEL-ZIV-WELCH (LZW) ALGORITHM

The LZW is a lossless data compression algorithm Ref. [5].
The compression algorithm starts with a dictionary containing
all characters. During the compression, the algorithm
dynamically expands the dictionary and outputs codes that
refer to strings in the dictionary. Normally, the number of
bits of the code is less than that of the variable length string in
the dictionary. Data is compressed when the algorithm
replaces the whole string with its code.
A nice property of LZW is that the dictionary does not have

to be packed with a compressed data. LZW decompression
does not require a dictionary because the algorithm can
reconstruct the dictionary while processing the compressed
data. When using LZW to decompress an English text, the
dictionary is initialized with all English characters and
symbols. However, in this paper, the output of the
decompression algorithm is a binary string. Therefore, the
dictionary is initialized with the number 0 and 1.
A pseudo code for LZW decompression used in LZWGA is

shown in Fig. 1.

0-7803-9740-X/06/$20.00 (C2006 IEEE W2B-4 ISCIT 2006

33

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

12:
13:
14:
15:

Algorithm LZW Decompress
add and 1 to the dictionary
read one code from input to c

output str(c)
p<-c

while input are still left
read one code from input to c

if the code c is not in the dictionary
add str(p)+fc(str(p)) to the dictionary
output str(p)+fc(str(p))

else
add str(p)+fc(str(c)) to the dictionary
output str(p)

end if
p<-c

end while

A variable c is used to store a code read from input.
A variable p is the previous value of c.

A function str(code) returns a string associated with code.
A function fc(string) returns the first character in string.

Fig. 1. LZW Decompress pseudo code

III. LZWGA

The main difference between LZWGA and Simple GA is
that a chromosome is in a compressed format. The
chromosome has to be decompressed before its fitness can be
evaluated. The pseudo code of LZWGA is shown in Fig. 2.

The algorithm begins by creating the first generation of
compressed chromosomes. Before evaluating the fitness of a

chromosome, the compressed chromosome is decompressed
using LZW Decompression algorithm. The fitness evaluation
is performed on the uncompressed chromosome.

After that, the new population is created to replace the old
population. The algorithm repeats the process of
decompression, fitness evaluation, and creating a new

population until the termination criterion is met. The
algorithm terminates when a solution is found or a maximum
generation is reached.

1:
2:
3:
4:
5:
6:

Algorithm LZWGA
Z<-create_first_generation (
repeat

P<-decompress(Z)
evaluate(P)
Z<-create next generation(Z)

until is-terminate(

A variable Z is the population of compressed chromosome.
A variable P is the population of uncompressed binary
chromosomes.

Fig. 2. LZWGA pseudo code

A. Creating the First Generation
Unlike a canonical GA, a chromosome in LZWGA is

encoded as integers. The chromosome in LZWGA is in a

compressed format. Each integer is a code for an index of an

entry in the dictionary. Chromosomes in the first generation
are created as a random integer strings with the constraint that

the ilh integer of a chromosome must not have value greater
than i+l. The first integer of the chromosome is either 0 or 1
because during the decompression, the dictionary is firstly
initialized with 0 and 1.

For example, an LZWGA chromosome that can be
successfully decompressed is (1,2,3). The decompression
algorithm will output a binary string 111111. A dictionary
has the entries ((0,0), (1,1), (2,11) (3,111)). Another valid
chromosome is (0,1,2). The decompression algorithm will
output a binary string 0101. A dictionary has the entries
((0,0), (1,1), (2,01) (3,10)).

If the ith integer in an LZWGA chromosome is invalid, the
dictionary look up in will be failed after the (i+l)th integer is
read. An example of an invalid chromosome is (1, 3, 3).
Before entering the loop, the input "1" (the o0h digit in the
chromosome) is read and the algorithm output 1. In the first
iteration, the algorithm reads "3" (the l" integer), adds to
dictionary the string 11 at the entry 2, and outputs 11. In the
second iteration, the algorithm reads "3" (the 2nd integer), and
fail when trying to execute str("3").

In order to generate the value of the ilh integer, a random
non-negative integer is modulo with i+l.

B. Decompression
Because the chromosome in LZWGA is compressed, it has

to be decompressed before its fitness evaluation. A
compressed chromosome is decompressed using LZW
decompression algorithm.

The length of the output chromosome is varied. If the
length is more than the size of the solution encoding, the
excess bits are discarded. If the length is less than the size of
the solution encoding, the remaining bits are filled with 0's.
After decompression, the decompressed binary string is
evaluated. A fitness of a compressed chromosome is equals
to the fitness of the decompressed chromosome.

C. Creating the Next Generation
LZWGA creates the population of the next generation by

selecting, recombining, and mutating compressed
chromosomes. A highly fit chromosome is likely to be
selected using any selection method such as tournament or
roulette-wheel selection. Compressed chromosomes can be
recombined using single-point, two-point, or uniform
crossover. Because each of these crossover methods does not
change the position of each integer, it automatically creates
valid chromosomes that each integer satisfies the constraint.
Therefore, the offspring can be decompressed. Mutation
changes an integer in uncompressed chromosome to a random
value that satisfied the constraint.

IV. SOLVING ONE-MILLION-BIT PROBLEMS

We solved one-million-bit OneMax, Royal Road, and Trap
problems using LZWGA with the parameters shown in Table
I. One of the most important parameters in LZWGA is the
length of chromosome. This is because it affects the size of

the search space. The size of the search space of n integers
LZWGA chromosome is equals to (n+l)! In our experiment,
a compressed chromosome has the length of 40,000 integers.
The size of the search space is 40001! or 8.37x10111717 points.
The number is enormous but it is much less than the size of
the search space of a canonical GA chromosome for the same
problem, which is 21000000 or 9.90X10301029 points.

The algorithm is implemented in Java language. It was
compiled and run using JDK 1.5 on Pentium 4HT 3GHz with
1 GByte of RAM. The operating system is Windows XP
Professional. We repeated the experiment for 30 times and
reported the average result.

A. OneMax
OneMax or a bit counting problem is a widely used

problem for testing the performance of various genetic
algorithms. The problem is formally defined as follows.

Fk(bl .. *bk)= kI bi (1)

where bi is in {0,1 } .

Fig. 3 shows the fitness curve of LZWGA in solving
OneMax problem. On average, LZWGA can solve the one-
million-bit OneMax in 154 generations or 15,400 fitness
evaluations. LZWGA can find solution in about 18 minutes.

The result of LZWGA is compared with the result from
Simple GA using the same parameters except the length of
individual is one million bits (no compression). Within the
same amount of time, the best chromosome that Simple GA
can find has a fitness value of 506,540, or a little more than
half of solution fitness.

Simple GA starts with a population with higher average
fitness but progress much more slowly than LZWGA (in
terms of CPU time). The first generation of Simple GA
already has an average fitness about half million. This is
because the population is the first generation is uniformly
random binary strings. In contrast, the average fitness of the
best chromosome in the first generation of LZWGA has an
average fitness of 428,933.

In OneMax problem LZWGA save memory and time to
transfer data from chromosomes' parent to chromosomes of
next generation. The chromosomes of LZWGA have 40,000
genes or 640,000 bits (40,000 x 16) but GA used ix106 bits
per chromosome (bits 0 or 1). Thus GA used memory and
time more than LZWGA. The memory usages and time of
LZWGA have effective in the genetic operation process
(crossover, mutation and reproduction).

34
TABLE I

PARAMETERS OF LZWGA

Parameter Value

Population size 100

Individual length 40,000

Selection method Tournament (size=4)

Crossover rate 80%

Crossover method Single point

Mutation rate 5%

Number of best individual to keep 10

Maximum generations 500

1000000

900000

U-
u)

800000

700000

600000

500000

400000
0 50 100

Generations
150 200

Fig. 3. Fitness curve of LZWGA and GA in solving one-million-bit OneMax
problem.

1000000

800000

U.

600000

400000

200000

0
0 50 100 150 200 250 300 350 400

Generations

Fig. 4. Fitness curves of LZWGA in solving one-million-bit Royal Road
functions

35

U-

1000000

975000 d

950000

925000

900000

875000

850000
0 100 200 300 400 500

Generation

Fig. 5. Fitness curves of LZWGA in solving one-million-bit Trap functions.

B. Royal Road
A simple Royal Road functions Ref. [6] denoted by R are

defined as:

R(x) = YcAi(x), where ii(x) otherwise (2)
i

For a problem with block size k, s, is a schema that have
defined in the range ixk to ((i+l)xk)-l. All other positions
contain a wild card '*' Each schema si is given with a

coefficient ci.
We conducted the experiment on various block sizes: 10;

100; 1,000; and 10,000. The fitness curves of LZWGA
experiment on solving the Royal Road problem are showed in
Fig 4. In our preliminary experiment, we tried to solve the
problem with various small block sizes such as 5, 10, and 20.
However, the results are very close to each other. Therefore,
we varied the block sizes so that they differ in the order. The
larger block size resulted in lower fitness in the early
generations. For block size 10,000, the average fitness of the
best chromosome over 30 runs is just 1,200. From 30 runs,

LZWGA cannot find solution for and 5 runs for the block
size of 1,000 and 10,000 respectively.

C. Trap
The general k-bit trap functions are defined as:

Fk(bl...bk) = fhigh ; if u=k (4)

Lfow-(uxfi0w)I(k-1) ; otherwise

where bi is in {O,1 1, u= Y li= andfhigh >fi0m. Usually,fhigh
is set at k andfi0w is set at k-1. The Trap functions denoted by
Fm k are defined as:

m

Fmxk(KI ...Km) = Fk(Ki), KiE {10,1 }k
i=l

(5)

The m and k are varied to produce a number of test
functions. The Trap functions fool the gradient-based
optimizers to favor zeros, but the optimal solution is
composed of all ones. The Trap function is a fundamental
unit for designing test functions that resist hill-climbing
algorithms.

We performed the experiment with Trap functions of
various trap size: 5, 10, 20 and 40 bits. The chromosome
length is one million bits. The fitness curves of LZWGA
experiments on solving trap functions are shown Fig 5.

The success rate and the average generation for a

successful run are shown in Table II. The increasing of trap
size reduces the probability of LZWGA in finding the
solution. The trap size 5 uses more generations than trap size
10 to convert solution and the trap size 20 use more

generation than trap size 40 too. Why small block sizes have
more generation than larger block size? LZWGA's algorithm
can be found solution although it was trapped.

0 2 3 4 2.

i12323 4 2
Fig. 6 LZWGA's chromosome mutate can change number 0 in

first gene to 1

Fig. 6 show the chromosome that was trapped in the trap
problem. When it decompressed the decompress chromosome
is 000000000.... GA must crossover and mutate bits 0
become but it is so difficult to change bits 0 to at all.
Instead of LZWGA can change number 0 in first gene be 1.

When it decompressed the chromosome was I I I11....
Thus LZWGA can be easier than GA to solve this problem.
Table Im shows an interesting behavior of LZWGA. When
the solution is not found, the maximum size of binary string in
the dictionary is 22 bits. Even at this maximum length, an

uncompressed chromosome is still shorter than one-million
bits (i.e., 22x40,000 = 880,000). It can be interpreted that the
deceived chromosome, or the one that converges to all zeroes,

has short length representative.

TABLE II

SUCCESS RATE AND AVERAGE GENERATION IN SOLVING TRAP PROBLEM OF
VARIOUS SIZES

Trapsize Success Generation

5 100% 158

10 90% 148

20 73% 214

40 27% 191

TABLE III
AVERAGE AND THE MAXIMUM SIZE OF STRINGS IN LZW DICTIONARY AFTER

DECOMPRESSING THE BEST CHROMOSOME

Solution Found Solution Not Found
Trapsize

Average Maximum Average Maximum

5 26 43

10 26 43 10 22

20 26 47 10 22

40 26 44 10 22

--l- Trap 40

/ Trap 10
X Trap 5

--A-14

36
V. DISCUSSION

LZWGA requires a decompression step before the fitness
evaluation. However, it adds only a linear time factor to the
complexity of the algorithm. LZW Decompress has the time
complexity of O(n), where n is the length of uncompressed
string. Moreover, if the complexity of fitness evaluation for a
particular problem is higher than linear, the decompression
time will not be a dominant factor.

In terms of CPU time, a single iteration of LZWGA is
much faster than Simple GA. The main factor is the size of
chromosome. For very long chromosomes, it is likely that the
computational time is dominated by the access to large size
data structure which renders cache memory ineffective. For
example, the time spent in creating the next generation in GA
with very long chromosome is much longer than in LZWGA
with compressed chromosome.

The search space of LZWGA is much smaller than that of
GA. However, if the search space is too small, a solution
might not exist in this space. For example, if the length of the
chromosome is 10 digits, the chromosome cannot be
decompressed into one million l's. In general, if we set the
LZWGA chromosome length too low, it will not be able to
find a solution. On the contrary, if we set the length too high,
the search space will become larger and it will likely take
longer to solve a problem.

[4] N. Kunasol, W. Suwannik, P. Chongstitvatana, "LZW-
Encoding in Genetic Algorithm," Proceedings of Electrical
Engineering Conference (EECON-28), pages 861-864, October
20-21, 2005. (abstract in English)

[5] A. Drozdek, Data Structure and Algorithms in Java,
Brooks/Cole, USA, 2001.

[6] M. Mitchell, J. Holland, S. Forrest, "When Will a Genetic
Algorithm Outperform Hill Climbing?," Advances in Neural
Information Processing Systems, vol. 6, pages 51-58, 1994.

VI. CONCLUSION AND FUTURE WORK

We used LZWGA to solve one-million-bit OneMax, Royal
Road, and Trap functions. LZWGA is similar to Simple GA
except that the chromosome is in compressed format. Before
an LZWGA chromosome is evaluated, it has to be
decompressed using LZW decompression algorithm. Our
experiment used 40,000 digits of LZWGA chromosomes.
LZWGA can solve one-million-bit OneMax problem using
about 15,400 fitness evaluations or in about 18 minutes. It
can also solve one-million-bit Royal Road with block size
10,000 and one-million-bit Trap function with block size 40.
OneMax problem and Trap functions have a high regularity

solution. It would be interesting to investigate how well
LZWGA solves other problems that the solution is not all l's
or allO's.

REFERENCES

[1] M. Mitchell, Introduction to Genetic Algorithm, MIT-Press,
1998.

[2] S. Chen and S. Smith, "Improving Genetic Algorithms by
Search Space Reduction (with Applications to Flow Shop
Scheduling)," GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, Morgan Kaufmann,
1999.

[3] W. Suwannik, N. Kunasol, P. Chongstitvatana, "Compressed
Genetic Algorithm," Proceedings of Northeastern Computer
Science and Engineering Conference, pages 203-211, March
3 l-April 1, 2005. (abstract in English)

