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Abstract- This paper proposes a way to use Building Blocks 

to improve solutions in Genetic Algorithm. Hard problems, for 
instance, Additively Decomposable Functions (ADFs) cannot 
be effectively solved by a standard algorithm such as Simple 
Genetic Algorithm.  A single point crossover creates disruption 
of good solutions for such problems. We proposed using 
Building Blocks Identification and performed appropriate 
crossover to solve ADFs. The experiment shows the validity of 
the proposed method. 

I. INTRODUCTION 

Building Blocks (BBs) are an important concept in 
Genetic Algorithm, according to the Schema theorem [5], 
[6], [9], [10]. BB is composed of two parts of definition. 
First, BB is embedded in the solution with high fitness. 
Second, properly composing these BBs gives the solution 
with higher fitness. However, BBs are not easily identified. 
This research proposed an approach to identify BBs in form 
of highly-related-group of bits as partitions. The knowledge 
of BBs can be used to prevent disruption of highly fit 
solutions from crossover operators.  When performing 
crossover, group of bits in the same BB should not be 
divided.  

Building Blocks can be identified by computing Chi-
square Matrices and use Partition Algorithm proposed in 
[3]. Each element of Chi-square matrices represents the 
degree of relation between two bits of selected population. 
Partition Algorithm groups bits with high relationship into 
BBs. 

To validate our hypothesis, we conduct experiments using 
problems of Additively Decomposable Functions (ADFs) 
(see Section III for the definition) which evidently consisted 
of BBs. The proposed method consisted of identifying BBs 
and using the knowledge of partitions to perform the 
appropriate crossover. This method is tested against a 
standard method, Simple Genetic Algorithm (SGA). 

ADFs are hard problems for SGA because a single-point 
crossover in SGA disrupts good solutions very often. The 
proposed method conserves good solutions and composes 
them into better solutions. 

Many recent papers are still interested in using various 
styles of GA to solve ADFs. In [7], GA is modified to use 
an adaptive population size. Furthermore, it also uses ADFs 
to compare adaptive GA with SGA. Other papers using trap 
functions to test the performance of their algorithms such as 
[11] and [12]. 

Some work encouraged finding BBs in order to improve 
GA’s functions such as Linkage Learning [8]. Many direct 
methods to find BBs are proposed such as [2].  

We use the method in [2] to find BBs and show how to 
perform crossover using Building Blocks. Similar idea can 
be found in [4] where BBs are used to guide updating rules 
for probabilistic model building GA. However, our work is 
unique in the sense of applying BB concept to perform 
crossover directly. 

II. BUILDING BLOCK IDENTIFICATION 

The algorithm presented in this paper is divided into two 
parts, the Chi-Square Matrix construction and the Partition 
algorithm (PAR). 

A. Chi-square Matrix 
The quantity of building blocks inversely relates to 

randomness. The Chi-square Matrix [1] is chosen for 
measuring randomness because computing the matrix is 
simple and fast. 

Let M = (mij) be an l× l symmetric matrix of numbers. Let 
P be a population or a set of l bit binary strings. The Chi-
square matrix is defined as follows. 

 
mij = ChiSquare(i,j)  ; if i ≠  j       

= 0 ; otherwise    (2.1) 

The ChiSquare(i,j) is defined as follows. 
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 (2.2) 
Where the observe frequency Count xy

P (i,j) counts the 
number of solutions in which bit i is identical to x and bit j 
is identical to y. The expected frequencies of observing 
“00,”“01,” “10,” “11” are n/4 where n is the number of 
solutions. The common structures (or building-blocks) 
appear more often than the expected frequency. 
Consequently, the Chi-square of bit variables that are in the 
same BB is high. The time complexity of computing the 
matrix is O(l2n). 

B. Partitioning (PAR) Algorithm 
Partitioning (PAR) Algorithm [3] will partition each input 

bit into suitable blocks. When performing crossover, bits in 
the same partition must not be separated.  The PAR input is 
an l × l matrix and its outputs the partition: 

P = {B0,  , B|P|−1}, U
1||

0

−

−

P

i
iB = { 0…… l −1}, 

Bi ∩ Bj = ∅  for all i ≠ j.  (2.3) 
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The Bi is called partition subset. There are several 
definitions of the desired partition. Algorithm PAR must 
have some preconditions. 

1. P is a partition. 
The members of P are disjoint set. 
The union of all members of P is {0, … ,  l−1}. 

2. P ≠  {{0, … , l−1}}.  
3. For all B ∈  P such that | B | > 1, 

For all i ∈  B, the largest | B | −1 matrix elements in 
row i are founded in columns of B \ {i}. 

4. For all B ∈  P such that | B | > 1, 
Hmax − Hmin < (α  Hmax − Lmin) where 0 ≤ α ≤ 1, 
Hmax = max({mij | ( i , j ) ∈  B × B , i ≠ j }) , 
Hmin = min({mij | ( i , j ) ∈  B × B , i ≠ j }) , and 
Lmin = min({mij |  i ∈  B , j∈{0,….. l−1} \ B }). 

5. There are no partition Px  such that for some B ∈  P, 
for some B x ∈  Px; P and Px satisfy the first, second, 
third and fourth conditions, B ⊂  B x. 

All the partition subsets can expand until they satisfy one 
of the preconditions above. 
 
 
M= (mij) denotes l × l Chi-Square matrix. 0≤  i , j ≤  l−1. 
Ti and Ri,j denote arrays of numbers indexed by 0≤  i, j ≤  
l−1. 
A and B are partition subsets. P denotes a partition. 
Algorithm PAR(M,α ) 
P ← ∅ ; 
for i = 0 to l − 1 do 

if i ∉  B for all B ∈ P then 
array T = {matrix elements in row i sorted 
in descending order}; 
for j = 0 to l − 1 do 

Ri,j = x where mix = Tj 
endfor 
A ← {i}; 
B ← {i}; 
for j = 0 to l − 3 do 

A ← A ∪ {Ri,j}; 
if A satisfies the third and the 
fourth conditions then 

B ← A; 
endif 

endfor 
P ← P ∪ {B}; 

endif 
endfor 
return P; 
 
 
C. Crossover Method 
The crossover operator can exploit the knowledge of  BBs 
by choosing appropriate cut points.  The cut point should 
not separate bits in the same BB (see Fig. 1).  To achieve 
this, a crossover mask in created for each partition.  When 
parents exchange bits to create offspring, all bits in the same 
partition will be moved together.  See the following 
example: 

 
Partition  <1 2 3 4 1 3 2 4 5 6 7 8 5 4 6> 
Mask Bits  <0 1 1 1 0 1 1 1 0 1 1 1 0 1 1> 
 

x x x x x x x x x x x x x x x 
Parent 1 

 
y y y y y y y y y y y y y y y 

Parent 2 
 

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 
Mask Bits 

 
After crossover, the two parents produce two children. 
 

y x x x y x x x y x x x y x x 
Child 1 

 
x y y y x y y y x y y y x y y 

Child 2 
 

The number in the partition shows the relation between 
bits. The same number illustrates the same partition which is 
also in the same building block. Flip coin method is used to 
choose whether partitions will be removed or remain 
unchanged. For instance, if the partition “1” is assigned to 0, 
all parts labeled with “1” are also assigned 0. After assign 
0/1 to all partitions in each gene, the partitions which are 
assigned to 0 must be swapped to their mate. Otherwise, 
they remain in the same positions. 

Figure 1 illustrates the difference between the crossover 
of BB algorithm and the crossover of SGA. The former will 
not break into a partition while the latter randomly chooses  
the cut point without considering the building block. 
  

 
(A) Mixing and maintaining BBs 

 
(B) Mixing and losing BBs 

Figure 1 Building block characteristics 
 

III. BENCHMARK PROBLEM 

To validate the proposed method, a set of benchmark is 
tested. The ADFs are chosen because they evidently 
consisted of BBs. The standard ADF is Trap function. To 
emphasize the effect of BBs, we also construct a modified 
version called Shuffle Trap function. The Shuffle Trap 
function has "loose-coding" of solution, i.e. bits in a BB is 
positioned far apart. Hence the single point crossover is 
ineffective against this encoding.  It always disrupts the 
BBs.  The definitions of Trap functions are as follows. 
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m ×  k-trap function 
m ×  k-trap function is defined as following. 

 F km× : B →  R, B ∈  B0…B 1−m  , Bi ∈  {0,1}k 
 (3.1) 

  F km× ( B0…B 1−m ) = )(
1

0
i

m

i
k BF∑

−

=

 

 (3.2) 

Where Fk is k-trap function [11]. The m and k are varied 
to produce many test functions. These functions are often 
referred to as additively decomposable functions (ADFs). 
The optimal solution consists of all “1” bits.  

Shuffle m ×  k-trap function 
The shuffle trap function is constructed by spreading bits 

of the same building blocks.  For instance, normal 4×5- 
trap function has building blocks as shown. 

11111 xxxxx xxxxx xxxxx 

The modulo method is used to construct one building 
block. The bits in the same building block are spreading out 
every m bits.  

1xxx 1xxx 1xxx 1xxx 1xxx 

The trap functions are composed of: 
a) 20×3- trap function 
b) 20×3- shuffle bits trap function  
c) 10×4- trap function  
d) 10×4- shuffle bits trap function 

To find solutions to the problems, the parameters for a) 
and b) are set as follows: population size = 15000, max 
generation = 500, crossover rate = 0.9, mutation rate is 
turned off and threshold (α) in PAR is set to 0.95 while the 
parameters for c) and d) are set as follows: population size = 
50000, max generation = 500, crossover rate = 0.9, mutation 
rate is turned off for BB algorithm while SGA is assigned to 
0.3. Threshold required in creating partition subset is set to 
0.95. 

IV. EXPERIMENTAL RESULT 

For comparison, SGA is used to solve for these problems. 
Each graph is averaged from 25 independent runs. Figure 2 
shows the relation between generations and fitness value in 
normal 3×20-trap function. The results illustrate that BB 
crossover algorithm performs better with respect to the 
mean and maximum fitness value than SGA. When increase 
one bit to each trap set in figure 3, the difference is even 
more pronounced. BB algorithm first found the optimal 
solution in the 60th generation and reached the steady state 
in the 140th generation. On the other hand, SGA got stuck in 
this deceptive function and cannot reach the optimal 
solution. 

 
Figure 2 Simulation result for 20×3-trap function 

 
Figure 3 Simulation result for 10×4-trap function 

 
Figure 4 and 5 represent the results of the shuffle trap 

function. Figure 4 clearly shows that BB gains higher 
performance than SGA. BB can reach the optimal solution, 
while SGA cannot. The situation is even worse for SGA 
with the larger size problem. The result is shown in figure 5. 

 
Figure 4 Simulation result for 20×3-shuffle bit trap function 
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Figure 5 Simulation result for 10×4-shuffle bit trap function 

 
From results of the experiments, the proposed algorithm 

reaches the optimal solution in earlier generation than SGA 
in normal trap function. Moreover, in shuffle trap function, 
SGA cannot find the optimal solution while our algorithm 
can. 

V. CONCLUSION 

We show that BB crossover algorithm can solve many 
deceptive functions, 20×3-bit trap, shuffle 20×3-bit trap, 
10×4-bit trap and shuffle 10×4-bit trap. As a result, our 
algorithms perform more effectively than SGA. Future work 
will explore the quality of BB algorithms in multiple 
objective optimization problems as well as in a wide range 
of real-world applications. 
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