
An Embedded Processor with Instruction Packing

C. Satayavibul, P. Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Phayathai road, Bangkok 10330, Bangkok, THAILAND

 g49cst@cp.eng.chula.ac.th , prabhas@chula.ac.th

Abstract - This work proposes a design of, SX4, a resource
efficient 32-bit processor. SX4 is designed for a limited
resource embedded system. The performance of SX4 has
been improved by the "instruction packing" method. The
measurement on the performance improvement is
evaluated. Instruction packing reduces the code size by
33.0% at the same time it improve the speed of the
processor by 17.1%. The proposed design has been
realized on a FPGA device. SX4 processor requires 10,020
equivalent gates. Its maximum frequency is 63 MHz. In
term of cycle consumed, it compares very well to
commercial 32-bit Xilinx's microprocessor, Micro Blaze.

I. INTRODUCTION

 Nowadays, the embedded devices are playing important
role in daily life. Computer exists in many things, such as
mobile phone and automatic vending machine. As a result, the
research in this area has many objectives: to improve the
performance, to minimize code size, to minimize power
consumption or to reduce cost of production depend on their
functional purposes.
 According to its working environment, the embedded
devices have to be built to fit its surrounding conditions. A
modern mobile phone needs a high performance processor for
its multimedia applications, while most of the other devices
don’t require such high performance.
 This is the main motivation of the work, to develop a
resource efficient processor with adequate performance. The
main focus of this work is to apply instruction packing method
to reduce the size of executable code and also to improve the
performance of a processor. The performance improvement is
possible due to the reduction in number of cycle in fetching
instructions. Such method is done by putting more than one
instruction into same memory address space, which reduces
the code size. As the code segment and data segment of the
proposed processor share the same memory bus, instruction
packing eases the memory bottle neck problem by reducing
instruction traffic between processor and memory. Moreover,
the proposed method requires little amount of additional
resource so that the enhanced processor is still very resource
efficient. Pipelining is another option for improving the
processor’s performance but it requires large modification on
processor’s data path which can violate the resource efficient
criteria.

II. PROCESSOR DESIGN

 SX4 is a 32-bit processor with no pipelined execution. Its
design is based on the design of stack-based processor, SMC
[1]. Fig. 1 demonstrates system overview of the proposed
processor. Additional perpherals are attached to the system via
memory-mapped I/O. SX4's instruction set is also based on
SMC's ISA. SMC's zero-address instructions, which operate
with data on top of stack, are replaced by one-address
instructions in SX4 so that there is no stack-based operation in
SX4. The processor operates with memory as shown in Fig. 1.
One part of memory is writable; another part is read only
(ROM). The ROM stores the code segment.

A. Data path
 This processor data path is improved from the previous
stack-based processor, SMC. (see Fig. 2) The processor has
32-bit data width. It consists of five registers: PC (program
counter), IR (instruction register), AC (Accumulator), FP
(frame pointer) and BUFFER.

B. Instruction Set Architecture
 SX4 uses three instruction formats: Short, Long1 and
Long2.(see Fig. 3) The Short format instruction, which is 16-
bit wide, consists of two parts: 8-bit opcode and 8-bit operand.
The long instruction formats are 32-bit wide. Long1 format
has 8-bit opcode and 24-bit operand. Long2 format has 4-bit
opcode, 20-bit operand and another extra 8-bit operand.
 SX4 instructions can be divided into four categories:
arithmetic&logic, data manipulation, control and misc (see
Table I). Unary instruction operates on AC. The binary
instruction needs one more element, which depended on the
addressing mode. It can be either an immediate value of the
operand or a local variable stored in the activation record. LD
and ST access global memory. GET and PUT access local
variables. CALL creates a new activation record. RET restores
the previous activation record and returns to the caller.

 The processor's operation is similar to an accumulator
machine. This design uses an activation record, instead of
general purpose registers. Although the activation record is
slower than register, but there is some benefit of using the
activation record. Firstly, it reduces size of the processor.
Moreover, the activation record eliminates register saving and
restoring during a function call.
 Normally, the SX4 processor takes one cycle for instruction
fetch and one more cycle for executing the instruction. But for
some complex instruction, execution needs two cycles to

mailto:%20u45cst@cp.eng.chula.ac.th

Figure 1. System overview of the proposed processor.

complete. As a result, overall performance of SX4 is around 2
to 3 cycles per instruction.

III. INSTRUCTION PACKING

 As mentioned earlier, the embedded devices are designed to
fit their working environment. In this paper, we introduce an
instruction packing method, which causes little impact to the
resource of a processor. The resource increased from
including the instruction packing is less than 10% of the
original design while it reduces code size and cycle consumed
in program execution.
 Instruction packing is done by putting two short instructions
in the same memory address space (see Fig. 4). As two
instructions are stored in one word, the processor will have
two instructions after one instruction fetch. There is a case in
which two short instructions can not be packed together. The

Figure 2. The data path of the proposed processor.

Figure 3. The proposed ISA format.

Figure 4. Example of instruction packing.

instruction, which is the destination of CALL or JMP, cannot
be placed in the most significant half word (31st – 16th bit).
This is due to the proposed design’s architecture does not
suport half word directional in CALL and JMP instruction.
Says, the program can not jump to the instruction placed in the
most significant half word. As a result, such instructions can
not be packed with the earlier instruction. Fig. 4 illustrates
example of such case. The GET LED_addr instruction is the
destination of the later IJX instruction, therefore it can not be
packed with the earlier LIT 0 instruction. Hence, NOP
instruction is packed with the LIT 0.
 In the best case, instruction packing can reduce the program
size by 50% and improve processor's throughput by 25%. This
method also reduces program's code size. To include
instruction packing on SX4, there is a small modification of
the control unit. The data path needs two 8-bit MUX to select
which half word is used. The extra circuit is shown in Fig. 2.
 A complier plays a role in packing the code for the
processor. Improvement in performance also depends on how
well the code has been packed.

TABLE I
THE LIST OF THE PROPOSED PROCESSOR’S INSTRUCTIONS.

Instruction category Instruction
Arithmetic&logic ADD, SUB, MUL*, DIV*, BOR,

BAND, BXOR, MOD*, ADDI,
SUBI, MULI*, DIVI*, BORI,
BANDI, BXORI, MODI*

Data manipulation LD, ST, LDL, STL, LDX, STV,
GET, PUT, INC, DEC

Control JMP, JT, JF, JMPL, JTL, JFL,
IJX, CALL, RET

Misc. LIT, LITL, NOP
* indicates the instruction has not yet been implemented.

See the following function written in a machine code as
follow:

The code above can be optimized by packing GET and ADD
instruction together as follow:

As a result, the packed code runs one cycle faster than the
unpacked code, hence the performance improved by 14%.

IV. MEASUREMENT

 In this section we test the processor with a suite of
benchmarks. There are seven programs used in the
measurement. There are seven test suites used in this paper:
Bubble, Merge, Quick, Fibonacci, Hanoi, Sieve and AES.
Bubble: bubble sort 100 items of data. The initial data is
ordered in descending order.
Merge: merge sort 100 items of data. The initial data is
ordered in descending order.
Quick: quick sort the descending ordered data. The following
number indicates number of data items.
Fibonacci: calculate the value of Fibonacci 10. The program
is written in recursive function.
Hanoi: solves the 6 disks Hanoi problem.
Sieve: finds all prime numbers which less than 100.
AES: AES (Advance Encryption Standard) (128, 128) bit key
block cipher [2].
 To test the processor, we divide the measurement into three
steps. Firstly, the instruction packed SX4 is compared to the
original SX4 (see Table II, III). The test result shows that the
SX4 executes packed code faster than unpacked code by
17.1% averaging over all benchmarks. Also packed program
code size is 33.0% smaller than unpacked programs.
 Secondly, code size comparison between packed SX4
program and other processors’ (see Table IV, V). One of them
is the stack-based processor [1]. The stack-based ISA is
widely known to achieve a compact executable code [3].

TABLE II
THE COMPARISON BETWEEN

PACKED CODE SIZE AND UNPACKED CODE SIZE.

 The total equivalent gates needed in Micro Blaze system,
the processor and 8kbytes of block ram is 315,528 gates. The
Micro Blaze alone needs about 55,000 gates. The test program
is written in C programming language and compiled by gnu C
compiler. We use Xilinx On-Chip Peripheral Timer/Counter to
measure the number of cycle consumed during execution. The
numbers of cycle shown in Table V are the number of cycle
that Micro Blaze takes to finish the test program and stop the
timer. In term of cycle, the SX4 compares very well with
Xilinx Micro Blaze. If running at the same frequency, the
proposed processor will be about 15% slower than Micro
Blaze, except for Fibonacci and Hanoi test suite. Because of
the use of activation record, SX4’s function call is very simple
and fast. Therefore, SX4 defeats Micro Blaze on heavily
recursive call programs. SX4 code size is about 60% of the
Micro Blaze code size. In term of performance, Micro Blaze’s
maximum frequency is 91 MHz while the proposed design’s is
63 MHz.

add:
 get a // 2 cycles consumed
 add b // 2 cycles consumed
 ret 3 // 3 cycles consumed

add:
 get a add b // 3 cycles consumed
 ret 3 // 3 cycles consumed

V. RELATED WORK

 Processor proposed in paper [1] uses stack-based instruction
approach to achieve the resource efficient criteria. Its
operations take elements on the top of stack so it does not
require general purpose registers. Performace is the major
weakness of the stack-based processor. Many methods,
include instruction packing [4] , are applied to improve the
performance. But the stack-based operations, which require a
lot of memory accesses, have limitted the processor’s
performance.
 There are many approaches in instruction packing. One of
them is the use of Instruction Register File (IRF) [5, 6]. IRF

TABLE III
THE PERFORMANCE COMPARISON BETWEEN

PACKED CODE AND UNPACKED CODE.

Test program Unpacked code
Cycle consumed

Packed code
Cycle consumed Speedup

Bubble 327,706 282,953 13.7%
Merge 34,712 27,888 19.7%
Quick 14.8%
20 items 5,388 4,575 15.1%
60 items 32,948 28,116 14.7%
100 items 82,908 70,856 14.5%
Fibonacci 3,875 3,112 19.7%
Hanoi 4,398 3,708 15.7%
Sieve 2,341 1,859 20.6%
AES 59,710 50,640 15.2 %

TABLE IV

THE COMPARISON BETWEEN
PACKED CODE SIZE AND THE STACK-BASED PROCESSOR CODE SIZE.

Test program Stack-based
code size (Byte)

Packed code
size (Byte) Comparison

Bubble 124 64 51.6%
Quick 187 168 89.8%
Fibonacci 50 68 136%
Hanoi 153 116 75.8%
Sieve 137 92 67.2%
AES 650 912 140.3%

Test program Unpacked code
size (Byte)

Packed code
size (Byte)

Size
reduce

Bubble 96 64 33.3%
Merge 388 224 42.3%
Quick 200 168 16%
Fibonacci 100 68 32%
Hanoi 180 116 35.6%
Sieve 152 92 39.5%
AES 1,336 912 31.7%

keeps the frequently occurring pair of instructions in the
program. This approach indicates multiple instructions by
indexing the IRF.
 Similar to instruction packing, code compression aimed for
reducing the code size. The well-known code compression
examples are ARM Thumb [7] and MIPS16 [8]. The special
instruction set is designed to offer small code size. Number
functions are unavailable in code compression mode. As a
result, the performance of the processor drop while operating
in code compression mode.

TABLE V
THE COMPARISON BETWEEN

THE PROPOSED PROCESSOR AND XILINX MICRO BLAZE.

Category Xilinx
Micro Blaze

Proposed
processor Comparison

Circuit size 315,528* 3.2%
(Equivalent gate) 55,000** 10,020 18.2%
Code size
(byte)
Bubble 172 64 37.2%
Merge 396 224 56.6%
Quick 264 168 63.6%
Fibonacci 112 68 60.7%
Hanoi 168 116 69.0%
Sieve 132 92 69.7%
AES encryption 1,524 912 60.0%

Performance
(cycle consumed)
Bubble 248,354 282,953 114.0%
Merge 23,389 27,888 119.2%
Quick
20 items 4,131 4,575 111.0%
60 items 24,439 28,116 115.1%
100 items 73,442*** 70,856 96.5%
Fibonacci 4,810 3,112 64.7%
Hanoi 4,102 3,708 90.4%
Sieve 1,195 1,859 155.6%
AES 43,500 50,640 116.4%

Maximum
frequency
(MHz)

91 63 0.69

* 8kbyte of Block ram is included in the equivalent gate count.
** approximated equivalent gate count of Micro Blaze processor. Block ram
is excluded.
*** indicates external memory is used to hold the Micro Blaze program’s
Stack/Heap section.

VI. CONCLUSION

 The design presented here of a 32-bit processor with
instruction packing achieves the main objective, to design a
resource efficient adequate performance processor. We divide
the conclusion into three points of view. First of all, in term of
resource consumed, the proposed design has been realized on
a Xilinx Spartan3 FPGA device. It consumes 10,020
equivalent gates. Secondly, in term of code size, the result is
still satisfactory. SX4’s code size is obviously smaller than the
conventional 32-bit processor. The proposed processor code
size also comparable to the stack-based processor [1], which is
a 16-bit processor. Finally, the number of cycle of SX4
executing the benchmark suites are comparable to a
commercial processor, Micro Blaze. However, the maximum
frequency of the SX4 is significantly lower than Micro
Blaze’s. To be fair, these results are based on small set of
benchmarks and should be taken as preliminary result. Our
current work is expanding on this result to include larger and
more diversed benchmark suite and better code generation
quality.

VII. REFERENCES

[1] A. Burutarchanai, P. Nanthanavoot, C. Aporntewan, and P.

Chongstitvatana, “A stack-based processor for resource efficient
embedded systems,” Proc. of IEEE TENCON 2004, Thailand, 21-24
November 2004.

[2] J. Daemen and V. Rijmen, “The Rijndael Block Cipher: AES proposal,”
1999.

[3] P. Nanthanavoot and P. Chongstitvatana, “Code-Size Reduction for
Embedded Systems using Bytecode Translation Unit,” Conf. of
Electrical/Electronics, Computer, Telecommunications, and Information
Technology (ECTI), Thailand, 13-14 May 2004.

[4] P. Nanthanavoot, A. Burutarchanai and P. Chongstitvatana, “Instruction
packing for a 32-bit resource efficient processor,” National Science and
Technology Development Agency (NSTDA) Annual Conference,
Thailand, 27-30 March 2005 .

[5] S. Hines, G. Tyson and D. Whalley, “Reducing instruction fetch cost by
packing instructions into register windows,” Microarchitecture, 2005.
MICRO-38. Proceedings. 38th Annual IEEE/ACM International
Symposium on Microarchitecture MICRO 38, 12-16 Nov. 2005.
Page(s):11 pp.

[6] S. Hines, J. Green, G. Tyson and D. Whalley, “Improving Program
Efficiency by Packing Instructions into Registers,” ACM SIGARCH
Computer Architecture News , Proceedings of the 32nd Annual
International Symposium on Computer Architecture ISCA '05, May
2005.

[7] Advanced RISC Machines Ltd., “An Introduction to Thumb,” March
1995.

[8] K. D. Kissell, “MIPS16: High-density MIPS for the Embedded Market,”
In Proc. of Real Time Systems '97 (RTS97), 1997.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10341
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10341
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10341
http://portal.acm.org/citation.cfm?id=1069992&coll=GUIDE&dl=GUIDE&CFID=13032319&CFTOKEN=12062152
http://portal.acm.org/citation.cfm?id=1069992&coll=GUIDE&dl=GUIDE&CFID=13032319&CFTOKEN=12062152

	Abstract - This work proposes a design of, SX4, a resource efficient 32-bit processor. SX4 is designed for a limited resource embedded system. The performance of SX4 has been improved by the "instruction packing" method. The measurement on the performance improvement is evaluated. Instruction packing reduces the code size by 33.0% at the same time it improve the speed of the processor by 17.1%. The proposed design has been realized on a FPGA device. SX4 processor requires 10,020 equivalent gates. Its maximum frequency is 63 MHz. In term of cycle consumed, it compares very well to commercial 32-bit Xilinx's microprocessor, Micro Blaze.

