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Abstract 
 

This work describes a class of language called 
Threaded Language and its implementation.  An 
interpreter for this language allows it to be easily 
extended.  Higher order functions and local variables 
are introduced into the language as extensions.  
Exploiting the dynamic nature of an interpreter, it is 
shown how to do a program transformation.  Using 
the "unfold" technique, a partial evaluation in this 
language is demonstrated.  The partial evaluation 
generates a specialised version of the input program 
that runs faster.  Finally, the implication of using this 
language to bootstrap a language on a new 
environment is discussed. 
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1. Introduction 
 

Writing programs to generate another programs 
are very useful.  The examples for such programs are 
a compiler and a code generator.  A compiler 
translates a source language into a target language.  A 
code generator translates parse trees or an 
intermediate language into machine codes. The 
process of compiling a program by a compiler 
usually consisted of many stages.  These stages work 
in a batch-like manner.  The final stage produces 
executable codes.  In contrast to a compiler, an 
interpreter reads a source program and executes it 
immediately.   
 
There are two main distinctions that are of interest 
between a compiler and an interpreter.  Firstly, the 
output of an interpreter is executed immediately.  
This fact makes it possible to use the action to 
participate in the translation process of the source 
program.  Secondly, an interpreter is much easier to 
write than a compiler.  The initial effort to bring up a 
working interpreter is much less than writing and 
debugging a compiler.  This is because an interpreter 
works directly with tokens of the source program 

rather than handling intermediate representation 
usually required by a compiler.  Of course, there is a 
penalty associated with using an interpreter, the 
speed of execution.  An executable code produced by 
a compiler runs much faster than using an interpreter 
on the same source program. 
 
I have two aims in this paper.  First, I want to explore 
a class of language, called Threaded Language, 
which has a structure that fits very well with an 
interpretive implementation.  Second, I want to 
illustrate the application of a program transformation, 
called partial evaluation, to generate a faster version 
of a program produced by an interpreter.  This is 
done using the Threaded Language itself. 
 
The presentation is divided into 4 sections.  Section 2 
defines Threaded Language including the details of 
its interpreter.  Section 3 explores simple extensions 
of the language by means of an interpretive 
technique.  Section 4 show a simple scheme of partial 
evaluation written in Threaded Language.  The next 
section discusses the implication of Threaded 
Language and finally, I relate the idea in this 
presentation to other works. 
 
2. Threaded language 
 
2.1 Definition 
 
A threaded language (TL) is composed of functions.  
There are two types of functions in TL: primitives, 
and definitions.  A primitive contains the actual 
machine codes. A definition contains a list of 
"threads" (or the pointers to functions). A thread can 
be either a primitive or a definition. 
 
  TL = definition 
  definition = primitive | definition 
 
where 
  primitive contains the actual machine codes. 
  definition is list of pointers to functions 



The data structure ("form") that represents primitives 
and definitions is designed so that the evaluation 
(execution) of both kinds is uniform.  The first 
location of a function is called a "head".  The last 
location is called a "tail" (see Fig. 1). As the form is 
dependent on the evaluation, the evaluator of a TL 
will be explained first. 
 
An evaluator of a TL implements the flow of threads 
by exploiting one stack (called "return stack", R) for 
storing the continuation points of function calls and 
using one machine code routine, “enter” and one 
primitive,  “exit”.  The flow of control employs two 
pointers: the instruction pointer (IP) and the function 
pointer (FP).  The instruction pointer, IP, is a kind of 
"program counter" that points to the definition being 
evaluated.  A program in TL is a list of pointers to 
functions.  So, the actual "instruction" of a program is 
reached by dereferencing IP.  This value is kept in 
FP.  To reach an actual machine code, FP is 
dereferencing once again.  Let @A++ -> B denotes 
a dereference of A put to B and post-incrementing A, 
pc denotes the actual machine code program counter. 
 
To evaluate (execute) a function: 
 
  @IP++ -> FP, @FP++ -> pc 
 
Now, we must present the "form" of TL. The head of 
a primitive is the pointer to the next address (denoted 
by *). The tail of a primitive is a machine instruction 
to jump to the "next" function.  The body of a 
primitive consisted entirely of machine codes. The 
head of a definition is the pointer to the "enter" 
routine. The tail of a definition is the pointer to a 
primitive "exit". To avoid confusion between names 
that denote difference objects, let us use the 
following notation.  let “name” be the name of a 
function as it appears in the source program (printed 
name), let &name be a reference to a functon (a 
primitive or a definition), let *name be a reference to 
a machine code routine. The Arial font will be used 
for the text that is the source program. 
 
       definition            primitive 
 
IP ->  *enter    +--> FP ->   * 
       &FP1    __|           machine 
       &FP2                  codes 
       ...                   ...  
       &exit                 jmp next 
 
* denote the next address 
 

Figure 1  The structure of definitions and 
primitives 

The head is a special place, it contains the machine 
code to set up the evaluation.  The "enter" is a 
machine routine, it saves the current IP and enters a 
function call pointed to by FP. 
 
enter:   
push IP -> R, FP -> IP, jmp next 
 
The "next" machine code performs fetching of a 
thread and execute it. 
 
next:   
@IP++ -> FP, @FP++ -> pc 
 
The tail of a definition performs a "return" to the 
caller, hence "exiting" a definition.  The "exit" is a 
primitive. It restores the IP from the return stack and 
continue to evaluate the next function. 
 
exit:    
* , pop R -> IP, jmp next 
 
The head of a primitive contains the pointer to the 
actual machine code in its body.  All primitives end 
with a jump to "next" hence evaluating the next 
function. The FP is important, before the evaluation it 
points to the head of a function to be evaluated, once 
the evaluation starts, it is then advanced to point to 
the body of function.  The actual machine code is 
executed by the second half of "next" using FP, 
@FP++ -> pc.  
 
The "enter", "exit" and "next" are the crux of the 
evaluator of TL.  It allows a higher form of language 
to exist as definitions. 
 
2.2  Compiling 
 
Compiling a "source" language into a correct form 
(threads) can be achieved by an evaluator (an 
interpreter). The evaluator can be very small as most 
of the work is distributed to definitions themselves 
which are actively participate in generating threads.   
 
The process of compiling is unlike a conventional 
compiler. It is more like applying a function to 
generate definitions which will be evaluated to create 
more definitions.  Primitives are pre-existing routines 
to build the first evaluator. The process is dynamic. 
The code is generated from the source, some of 
which is executed to generate more code.  This is in 
contrast with a conventional compiler where the 
process of compiling is more batch-like.   
 
An evaluator employs an evaluation stack (E) to store 
all the intermediate results.  It has a state called 
"mode".  The evaluator can be in either mode: a 



compile mode or an execution mode.  The compile 
mode is established when a type of definition, called 
defining functions, appears in the source. When a 
definition is ended, the mode is changed to execution.  
For example, here is the source of a postfix form TL: 
 
  def add2  
    2 +  
  end 
  11 add2 print 
 
The "def" and "end" are defining functions. They 
define the token "add2" as a new function.  Its body 
is the thread of "2" and "+" functions. "11 add2 print" 
is in the execution mode. It is immediately executed. 
Please note that the source is a mix of both defining 
new functions and executing them. 
 
In the compile mode, most tokens read from the 
source will be translated into pointers to functions.  
In the execution mode, a token will be searched in a 
list of existing definitions (store in a symbol table) to 
find its reference (FP) and then it will be executed 
(using the "next"). Some definitions are executed in 
the compile mode. They are the part of the compiler. 
There are five possible actions in an evaluator.  An 
evaluator can be described as follows: 
 
eval 
  read a token from source 
  if it is a number 
    if execute mode 
      push it to E   (1) 
    else 
      include its handler in def_n (2) 
  else  
    if search is not found 
      stop with error  (3) 
    if execute md or compiler function 
      execute it  (4) 
    else  
      include its ref in def_n(5) 
  eval 
 
The example of source above will be compiled into 
the following definition. 
 
symbol table 
 
"add2"  $2    

    definition 
 
$2  *enter 
    &number 
    2 
    &add 
    &exit 
 
Where &number, &add are the pointers to the 
appropriate functions (either a primitive of a 
definition). The tokens "11", "add2" and "print" will 
be executed immediately under the execution mode. 
With this basic evaluator, now simple extensions will 
be demontrated. 
 
3. Language extension 
 
3.1  Higher order function 
 
Compiler functions are examples of higher order 
functions.  Collectively they create another function 
which can be executed.  A "def" and an "end" do: 
 
def 
  change mode to "compile" 
  read the next token from source (1) 
  create entry in the symbol table (2) 
  alloc an open-end space for storing 
    the definition (3) 
  put "*enter" at the head   
 
end 
  put "&exit" at the tail 
  change mode to "execute" 
 
Between "def" and "end" is the body of a function. 
The body of definition will be filled in by the 
evaluator evaluating the source. 
 
A generic defining function can be defined as follow. 
 
  def def-generic  
    create pack machine 
    <machine code> 
  end 
   
There are three functions to be explained: "create", 
"pack" and "machine".  
 
create 
  do the (1) (2) (3) of "def" above 
 
pack 
  pop a value from E,  
  put it in the body 



 
machine 
  similar to "end" but  
  put "mcode" at tail instead of "exit" 
  read the <machine code> until "end" 
  fill them in the body of def-generic 
  change mode to "execute" 
   
The function "machine" is a compiler function. The 
<machine code> that followed is not executed.  It is 
put into the body.  The definition of "def-generic" is 
as follows: 
 
symbol table 
 
"def-generic" $3 
 
      definition 
 
$3    *enter 
      &create 
      &pack 
      &mcode 
      <machine code> 
 
The primitive "mcode" will be explained after we 
show how this "def-generic" is used to create a new 
function.  As an example, we will create a new 
defining function "variable" which is used to create a 
global variable. 
 
  def variable 
    create pack machine 
    <machine code for variable> 
  end 
 
The definition of "variable" is: 
 
symbol table 
 
"variable" $4 
 
         definition 
 
$4       *enter 
         &create 
         &pack 
         &mcode 
$5       <machine code for variable> 
 
The "variable" is used (executed) as this: 
 
  10 variable xyz 
 
Using "create" the "variable" function will create the 
following definition: 

 
symbol table 
 
"xyz"  $6 
 
         definition 
 
$6       * 
         10 
 
The "pack" includes a value from E to the body. 
Then, the "machine" primitive does placing the 
reference to the <machine code for variable>, $5, in 
the head of this new definition.  When "xyz" is 
evaluated, its machine code is activated (by the 
pointer in the head). The machine code for "xyz" will 
just leave its value on E. "xyz" acts like a global 
variable.  The value storing in its body is an 
initialised value. A compiler function "->" is defined 
to set a value of a variable. 
 
-> 
  read next token from source 
  search its reference 
  include "&set reference" 
 
set 
  * 
  pop a value from E 
  store it to reference+1 
    
"xyz 1 + -> xyz" will increment xyz.  Please note 
that "->" must be used in the compile mode only.  A 
"type" can be implemented by using different 
<machine code> appropriate to the desired type of 
function. 
 
3.2  Local variables 
 
We have defined a language where everything are 
functions where all intermediate values passing 
between them are in the evaluation stack, S.  A 
function to create a global variable is defined, 
"variable".  How to include local variables in the 
language?  Local variables can be stored in R (similar 
to a stack frame in a conventional compiler).  A 
pointer "Local Stack" (LS) stores the base address of 
this frame. A reference to a local variable is an offset 
from LS. Two primitives are defined for local 
variables: lget, lput. 
 
lget i 
  push LS[i] to S 
 
lput i 
  LS[i] = pop S    
 



where i denotes a reference to a local variable. A 
compiler function, "[" is used to create local variable 
of a function. It reads the source and build a local 
symbol table with references 1..n until the token "]" 
is found. All tokens between "[" and "]" are local 
variable names.  The behaviour of a local variable is 
defined as follows.  When a local variable name 
appears in the source, it is compiled into "lget". To 
update a value to a local variable, a function "->" is 
defined. It must be modified slightly from the 
previous definition that deals with a global variable 
only.   
 
-> 
  read next token from source 
  if search local symbol table is found 
  then 
    include "&lput ref" in def_n 
  else  
    search global symbol table 
    include "&set ref" in def_n 
 
The following is an example of a function with local 
variables. 
 
  def haslocal [ x y ] 
    1 -> x 
    2 -> y 
    x y + 
  end 
 
The above function is compiled into the following 
definition: 
 
local symbol table 
"x"   1 
"y"   2 
 
symbol table 
"haslocal"  $7 
 
       definition 
 
$7     *enter 
       &frame 2 
       &number 1 
       &lput 1 
       &number 2 
       &lget 1 
       &lget 2 
       &add 
       &remove 
       &exit 
 
where "frame n" and "remove" are primitives that 
create a frame of size n, and remove the frame.   
 
The evaluator has to be modified slightly to search a 
local symbol table first then the global symbol table.  

When a local name is found it includes "lget ref" into 
the definition (modifying the (5) action of the 
evaluator).  The "def" and "end" needed to be 
changed slightly too, to handle "frame" and 
"remove". 
 
A new evaluator can replace the old evaluator using 
the observation that an evaluator is a function hence 
its definition is like this: 
 
          definition 
 
&eval ->  *enter 
$8        *eval 
          *jmp .-1 
          &exit 
 
Please note that an evaluator runs in an infinite loop. 
Its "exit" is never executed.  We define a function 
"neweval" to replace the "*eval" (at $8) with the 
reference to a new evaluator "&eval2" (assuming it 
just has been defined). 
 
  def eval2 
    ... 
  end 
  neweval  
 
3.3  Example of a TL 
 
A simple language in postfix form is defined using a 
few defining functions. These are compiler functions: 
 
  def end if else { } while -> 
 
The control flow functions: if else { } while, compile 
the appropriate handlers (jmp, jmp-if-false) into the 
body of definition. Other functions are of general use.  
They are simple to be implemented as primitives 
("variable" is as defined previously).  
 
  variable + <= print 
 
For the evaluator we need these machine code 
routines: 
 
  enter next exit number search set 
 
For local variables the following functions are 
needed: 
 
compiler functions:  [ ] -> 
machine code: lget lput frame remove 
 
Here are some example of language use: 
 



  0 variable count 
 
  def one-to-ten  
    1 -> count  
    while count 10 <= {  
      count print 
      count 1 + ->  count 
    } 
  end 
    
  def rec-one-to-ten [ n ] 
    ->  n     
    if n 10 <= {  
       n print 
       n 1 + rec-one-to-ten 
    } 
  end 
 
  one-to-ten   
  1 rec-one-to-ten 
 
The beauty of this example is that the compilation of 
this source and its execution is contained in the 
evaluator (eval function) and all pre-defined 
functions above.  There is no need for any other 
function to compile and run this source! 
 
4. Partial Evaluation 
 

A partial evaluation [1] is program optimisation 
technique, so called "program specialisation".  It is a 
method to generate a specialised version of a 
program.  It takes two inputs: the source program, 
and a part of its input, it then outputs a program that 
is usually longer than the original but runs faster. Fig 
2 shows a partial evaluator takes two input: a 
program p, and its input in1. It constructs a new 
program p_in1, which will yield the same result that 
p would have produced given both inputs.  
 
                 static input in1 
                      | 
                      v 
a program                              
 p          ->  partial evaluator 
                      | 
                      | 
                      v 
dynamic  
input in2   ->  specialised   -> output  
                program p_in1 
 

Figure 2. A partial evaluation due to [1] 
 
We can apply a partial evaluation with TL.  We need 
to execute a function as usual but a "trace" of 
execution is recorded.  This can be achieved with a 

modified evaluator.  With this "trace" a new version 
of program can be generated using a defining 
function.  We give a simple example of the process. 
Given a program "power" that computes xy where x 
is a global variable and y is a local variable and a 
static input "3 power". 
 
  def power [ y ] 
1    -> y 
2    if y 1 == { 
3       x 
4    else 
5       x  y 1 - power * 
     } 
  end 
 
The specialised version of "power" will be 
 
  def power3  
    x  x  x  *  * 
  end 
 
To achieve a partial evaluation, the technique of 
"unfolding" function calls [2] is used.  We record the 
binding of the original program with respect to its 
input "3 power", hence the syntactic entities of 
interest are: "x" and "*".  We modify the evaluator to 
record these two entities, the record is called a 
"trace".  Here is the trace of executing "3 power". 
 
   (y = 3) 
   1 2 4 5 
   (y = 2) 
   1 2 4 5 
   (y = 1) 
   1 2 3 
 
At line 3 and 5, the "x" and "*" are recorded.  Here is 
it. 
 
   "&x" "&x" "&x" "&*" "&*" 
 
We can define a defining function to take this trace 
and generate a function. 
 
  def power3 
    x  x  x  *  * 
  end 
 
Another use of a partial evaluation is to generate an 
"unfold" version of a function.  In our case, a 
definition can be unfolded into primitives.  This will 
speed up the execution of a program because the 
overhead associated with "threading", the "enter", 
"next" and "exit" can be reduced or bypass.  This is 
similar to compile to machine codes.  In order to do 
this, the evaluator must be able to understand the 



meaning of some machine codes so that it will be 
able to take appropriate "execution" of those 
instructions and records its effect. 
 
A defining function to generate a primitive is as 
follows. 
 
  def primitive 
    create 
    packcode 
  end 
 
Where "packcode" is similar to "machine" but does 
not include "mcode". It reads the source until "end" 
and packs the machine code into the body of the 
function being defined.  Here is a sample of its use. 
 
  primitive power3p <machine code> end 
 
The part <machine code> is generated by applying 
partial evaluation to "power3" and record its 
primitives execution. 
 
5.  Discussion 
 

I have explore the design of a Threaded language 
and show its implementation.  Because of its dynamic 
execution it is easily applied to generate programs.  I 
will discuss two aims I set out from the beginning of 
this presentation.   
 
First, the language, the structure of TL as definitions 
allows the representation to be uniformly interpreted.  
The flow control of TL is encapsulated into a few 
mechanisms ("enter", "next", "exit").  This structure 
gives rise to a "higher level" language, i.e. the 
definition.  Once the first evaluator (interpreter) is 
written, the subsequent programming can be done 
with this "higher level" language (define new 
functions). 
 
Second, the application of TL as a partial evaluator 
can be easily achieved.  This is because the nature of 
TL as an interpreter.  The defining function plays an 
important role in the flexibility. The ability to take 
some appropriate input and generates a program out 
of it. This allows a partial evaluator to be constructed 
naturally in TL. 
 
Now I will elaborate on the implication of this 
presentation. The implementation effort to bring up a 
TL language is very minimal.  Each primitive can be 
implemented in around 10 lines of assembly code.  
The "eval" function is implemented in 50 lines of 
assembly code (it can be done as a definition but 
something has to be pre-existed for it to work).  The 

accompany symbol table search and the scanner for a 
source can be implemented conventionally. The crux 
of TL is just a few machine code instructions (as it 
should be as it is the bottleneck of the performance of 
a TL).  To contrast this with a compiler.  I have a 
compiler system written in the same machine code 
that I wrote TL (s-code [3]).  The source is publicly 
available (Som version 2.0 [4]).  The compiler source 
code is about 2000 lines. Of course, this is not a very 
fair comparison because the compiler and tke 
interpreter do not "compile" the same language (one 
being Som language, another is TL). But, both 
languages are not too different as they are simple 
languages for teaching purpose.  
 
This use of TL can be very beneficial to 
"boostrapping" a language in a new environment.  
For example, to build a new embedded system, an 
engineer usually selects a processor which has a rich 
set of accompanying compiler, assembler, monitor to 
create and debug software for a new platform.  This 
is appropriate.  However, if the engineer wants to 
choose a custom-made processor, then he or she will 
face with an enormous task of creating an appropriate 
tool chain.  Here is where a TL style can be of help. 
 
The result of partial evaluation is quite impressive.  
Here are the comparison of "power", "power3" and 
"power3p" on the same dynamic input.  The speed is 
measured in terms of the number of machine 
instructions executed to complete the task.  
 

power    492 instructions 
power3    196 instructions 
power3p      21 instructions 

 
6. Related work 
 
The term "threaded code" was used as a technique to 
write an interpreter.  It can be traced far back many 
years ([5] in 1973).  A. Ertl [6] discussed many 
methods to implement "threaded code".  My threaded 
language is influenced heavily by this history.  The 
implementation presented here is partly similar in 
style to the one in the book [7] which was also 
influenced by the FORTH language invented by 
Charles H. Moore [8, 9].  The discussion on the topic 
of boostrapping a new system is explored in depth in 
my earlier work [10].   
 
The code and the executable system for this 
experiment is available publicly on my website, at the 
project topic "Threaded Language" [11]. 
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