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Abstract 

 
    This paper presents a cellular compact genetic 

algorithm (CCGA) for evolvable and adaptive hardware. 

The CCGA has cellular-like structure which is suitable 

for hardware implementation. The CCGA is developed 

from compact genetic algorithm (CGA) and parallel 

estimation of distribution algorithm (EDA). The concept 

and algorithm of the CCGA are presented. The standard 

test functions are selected to measure the effectiveness of 

the CCGA. The experimental results significantly shows 

that the CCGA outperforms the normal compact GA and 

deliver compatible results to the cooperative compact 

genetic algorithm while employs only one type of cell. The 

implemented hardware in FPGA demonstrates the 

feasibility to use this new kind of genetic algorithm to 

evolvable and adaptive hardware. 

 

1. Introduction 
 

   Evolvable hardware (EH) is a research area in the field 

of evolutionary computation (EC).  EH is the integration 

of evolutionary computation and programmable hardware 

devices. The objective of evolvable and adaptive 

hardware is to create “autonomous” reconfiguration of 

hardware structures in order to improve performance [1]. 

With the use of evolutionary computation and 

reconfigurable device like FPGA, evolvable hardware has 

the capability to autonomously change its hardware 

architecture and function. Recent research trend directs 

toward functional approaches for the design of extrinsic 

and intrinsic EH [2-6].  

    The key concept of our focused evolvable and adaptive 

hardware is to regard the configuration bits of 

programmable hardware architecture as the chromosomes 

of Genetic algorithm (GA) [1].  By optimizing a fitness 

function to achieve a desired hardware function, the GA 

becomes a means of autonomous hardware configuration. 

There are a number of methods and techniques that 

propose to apply the Genetic Algorithm (GA) and 

Evolutionary Algorithms (EA) to be implemented in 

hardware for evolvable hardware (EH) and adaptive 

hardware, especially implementation into FPGAs [7,9-10].  

However, in order to accomplish the intrinsically on-line 

evolving in hardware pose a challenging question of how 

to modify or invent efficient and improved GA or EA 

algorithms that can be effectively implemented into 

hardware [9]. 

The compact genetic algorithm (CGA) is a kind of the 

probabilistic model-building genetic algorithms 

(PMBGAs) or the estimation of distribution algorithms 

(EDA) [11]. The compact GA operates on probability 

models or probability vectors by replacing the crossover 

and mutation operators with the probability model 

estimation. The CGA) can be efficiently implemented in 

digital hardware [9, 10]. Even though CGA has advantage 

for hardware implementation; however, the CGA lacks 

sufficient search power for real world EH applications that 

requires accuracy and faster processing time.  Therefore, 

the CGA is improved by adding more techniques like 

elitism, mutation, and champion resampling. This 

modified CGA is called *CGA or *CGA family [9].  

The parallelization of GA has been the active research 

topic using high performance computer systems [12]. The 

parallelized GA can be efficiently implemented in 

hardware with more available hardware resources in 

current FPGA devices [10]. Parallel GA has been 

modified and implemented in FPGA to offer more search 

power in hardware.  

       In this paper, we present the cellular compact genetic 

algorithm (CCGA) and explore its hardware 

implementation. CCGA is based on parallel genetic 

algorithm [12]. It is similar to cooperative compact 

genetic algorithms [10]. However, cellular CGA is more 

suitable for hardware implementation since it has two 

dimensional array structures like cellular automata with a 

uniform cell type. CCGA is also derived from the parallel 

EDA [13] with improvement on probability model 

recombination. 
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   The rest of this paper is organized as follows. Section 2 

describes the cellular compact genetic algorithm. In 

Section 3, the hardware design of CCGA is presented. 

Section 4 presents FPGA implementation results. The 

paper concludes with a summary in Section 5. 

 

 

Figure 1. Pseudocode of compact GA 
 

 

2. Cellular Compact Genetic Algorithm 
 

     Cellular compact genetic algorithm is developed from 

compact genetic algorithm [11] and parallel GAs [12]. 

The concept of cellular compact genetic algorithm is to 

parallelize or divide a large problem into smaller tasks 

and to solve the task simultaneously using multiple 

genetic algorithms. CCGA is different from a traditional 

parallel GA since it operates on probability vectors. 

CCGA is a parallel univariate estimation of distribution 

algorithms (EDAs) that migrates the probability model 

instead of individuals [13]. CCGA improves model 

combination through local search by searching the better 

model from neighbors to be combined with the inner 

model of the cell [14]. The CCGA consists of uniform 

cellular compact genetic algorithm cells connected in a 

cellular automata space by each CGA cell only exchange 

probability vectors to its neighbors.  In this section, we 

describe the compact genetic algorithm which the 

foundation of CCGA. The key characteristic of CCGA 

which are the topology of CCGA and the algorithm of 

CCGA are described.  

  

2.1. Compact Genetic Algorithm 

 
The fundamental of the CCGA is the compact GA [11]. 

The compact GA represents the population as a 

probability distribution over the set of solutions. Thus, the 

CGA maintains a probability vector which is constantly 

updated while the CGA operates. At each generation, the 

two individuals are randomly generated from the 

probability vector. Then, tournament section is performed 

over the two individuals. Each bit of the probability vector 

is adjusted according to the result of the tournament 

selection. Eventually, the CGA keeps running until the 

probability vector is converged. The pseudocode of the 

compact GA is shown in Fig. 1. The hardware 

implementation of compact GA consists of each bit  

represented by a probability vector which is connected to 

form a chromosome. The hardware compact GA and its 

variant can be found in [9]. 

 

 

Figure 2. Topology of cellular compact GA 

 

2.2. CCGA Topology 

 
Fig. 2 illustrates the topology of the cellular compact 

GA. The topology of the proposed CCGA resembles the 

cellular automata (CA) system that cells only interact with 

their neighbors [16]. When each local CA cells operates 

together, the global states of computation can emerged 

[16]. With this proposed CA topology, the hardware 

realization of the algorithm is straight forward and can be 

practically and efficiently implemented into FPGA 

because of the architecture of array of logic block [17].  

     Each coarse grained CCGA cell has a probability 

vector which represents a sub-population. Every CCGA 

cell is identical. In Fig. 2, Each CCGA cell with four 

neighbors exchanges probability vectors and key 

information between its neighbors. Every CCGA cell 

keeps adjusting its own probability vector to the better 

probability.  The confidence counter (CC) is introduced to 

help each cell evaluates recombination method of the 

probability vector coming from its neighbors. The key 

parameters for CCGA topology is the number of the 

neighbors of each cell.  



 Figure 3. Pseudocode of cellular compact GA 
 

2.3. CCGA Algorithm 

 
Fig. 3 shows the pseudocode of the cellular compact 

GA. Each cell of the CCGA has the identical algorithm as 

shown in fig. 3.  For each cell, one bit of the GA is 

represented by a probability vector. There are eight steps 

in the algorithm. The fourth, fifth, and sixth step are added 

to the standard compact genetic algorithm.  At the third 

step, the confident counter is used to tract the frequency of 

updating of the probability vector.  

 At first, the probability vector of each CCGA cell in 

the cellular automata space is initialized to the mid-point 

range. In the first and second step, two individuals are 

generated from the probability vector, then compete 

similar to a normal compact GA.  The probability vector 

of each cell is updated as shown at step 3.1 in Fig. 3.  

When the probability vector is updated, the confident 

counter is incremented.  If the confident counter of each 

cell reaches a certain level, then the probability vector and 

the confident counter of each cell are passed to its 

neighbors.  

In fifth and sixth step, once a cell receives the 

probability vector and confident counter from its 

neighbor, the cell performs local search by selecting the 

best probability vector from the incoming vectors. Then, 

the new inner probability vector is calculated from the 

adaptive combination weighted by the  value, which 

derives from the best confident counter shown in step 6.2. 

Using  for vector recombination in step 6.3, the 

CCGA can avoid local minima of the greedy search by 

shifting search direction gradually toward the better one. 

This feature of the CCGA contributes to the better 

performance when compared to the cooperative compact 

GAs. 

Finally, the CCGA keeps running until the probability 

vector is converged. 

The proposed CCGA algorithm is different from the 

normal compact GA and the cooperative compact GA 

[14] in four ways:   

        (1) With uniform cells, the probability vectors are 

passed directly to neighbor cells.  

        (2) The confidence toward the better probability 

vector is calculated as confident counters and passed to 

neighbor cells. In figure 3, the step 3.2, 4 and 5 are 

inserted into the normal Compact GA.  

        (3) Improved probability vector combination is 

implemented by local search and adaptive combination in 

step 6 in fig 3. This combination scheme proposed to 

provide a solution to the greedy search characteristic of 

the cooperative compact genetic algorithm [14,18]. The 

local search is implemented through selecting the best 

probability vectors among its neighbor and the use the 

confident counter that keeps frequency of the updating to 

the probability vector of each cellular compact GA cell. 



The higher confident counter values contribute to higher 

chance to reach the better solution. The probability vector 

combination refers to the following equation: 

                

 Where  is adaptive weight calculated from the best  

confident  counter among neighbors. The better 

confident counter will provide the lower  which 

increases the influence of the incoming model 

from the neighbors.   

              is a new inner probability vector of a 

CCGA cell 

        is the best incoming probability vector 

from neighbors  

 (4) Asynchronous migration rate of probability vector 

for each CCGA cell using confident counter.  Since the 

updating rate of each CCGA cell to its confident counter 

different. This contributes to the different rate to exchange 

the probability vector.  

 

3. Hardware Design 

 
A CGA cell is designed by adding additional modules 

to the hardware of the normal compact GA hardware [9]. 

Fig 4 shows the hardware design of the N-bit module of a 

CCGA cell. CCGA bit-module is based on the design 

proposed in [14] integrated with the communication unit 

(COMM), the confident counter unit (CC) and the 

probability vector combination unit (VCOMBIN).  

In Fig 4, the hardware design consists of four main 

blocks. The first block is the CCGA bit-module which can 

be cascaded to form N-bit chromosome. The second block 

is the CC&COMM unit that has the confident counter 

(CC) and the communication unit COMM. The third 

block is the probability vector combination unit 

VCOMBIN. The fourth block is a simple finite state 

machine acts as the main controller for the whole block. 

The detail of these three additional modules is described 

as follows. 

   COMM is a finite state machine that controls sending 

and receiving the probability vector as an 8-bit package 

between each CCGA cell. For a chromosome of N-bit 

length, the CCGA needs to have N number of probability 

vector which each probability vector sizes 8-bit. Thus, for 

N-bit length chromosome, N packages of 8-bit will be sent 

and received between each CCGA cell by the COMM 

unit. 

CC is the confident counter designed as a 5-bit counter. 

During fitness evaluation, the counter is incremented 

every time when the fitness of the winner is better than the 

current best fitness. The value of the counter is passed to 

the neighbor CCGA cells with the current probability 

vector. 

 

Figure 4. Hardware design of a cellular compact 
GA cell 

 

VCOMBIN is the hardware block that implements the 

step 6 of the pseudocode the fig. 3. A hardware part of the 

block consists of comparators and multiplexers for 

comparing incoming confident counter. The best 

confident counter will be selected among the incoming 

confident counters of the neighbors. The confident 

counter (cc) is converted to β by using fractional number 

(1/cc). The multiplication of β with the probability vector 

is implemented using shift register instead of using 

multipliers which occupy more hardware resource. With 

shift register implementation, the cc value,  = 1/cc, will 

be scaled down to multiple of 2. From equation of vector 

combination of CCGA algorithm, after multiplication, the 

value of both probability vectors will be added using 8-bit 

adder. 

    FSM_CONTROL is a simple finite state machine 

that controls the three datapath blocks. The CCGA-bit 

module takes four clock cycles for generating the two 

values A and B for tournament selection and updating 

probability vectors. The COMM module takes sixteen 

clock cycles for sending and receiving probability vectors; 

however, the number of clock cycles depends on the size 

of the chromosome for a specific problem. VCOMBIN 

takes two clock cycles for latching probability vector to 

the internal registers and perform shifting and addition. 

 

4. FPGA Implementation results 

 
We implemented the CCGA with two neighbors in Virtex-

5 LX50 device. The code was design and coded in 



synthesizable Verilog HDL. ModelSim Version 6.2 was 

used for simulation. Xilinx ISE 9.1 was used for FPGA 

implementation. For our initial tests of the 

implementation, “one max” problem with 32-bit was used 

to verify the operation of the CCGA. The simulation result 

of “one-max” is shown in Fig. 5. The hardware was also 

tested with F1 and F2 functions as follows: 

              

 

           

   

when  -2.048  < . 

 

In Fig. 5, Fig. 6 and Fig. 7, the simulation results show 

the comparison between normal compact GA, the 

cooperative GA and cellular compact GA for OneMax, 

F1, and F2 functions. The CCGA and CoCGA contain 

two nodes; each has 32-bit probability vectors while CGA 

has only one node with one 32-bit probability vector. The 

performance of CCGA outperforms the normal CGA in 

term of speed and quality of the search results.  CCGA 

provides at least two times speed up over normal compact 

GA in Onemax, F1 and F2 test cases as shown in Table 1. 

In addition, the CCGA provides the compatible speed up 

to the cooperative compact GA.  

 Table 2 shows the FPGA implementation of one node 

and when CCGA is scaled up to four nodes.  From Table 

2, the speed of the CCGA is not related to the number of 

the nodes which demonstrates that CCGA can be scaled 

up to a problem size in FPGA hardware. The comparison 

of FPGA resources is shown in Table 2.  CCGA occupies 

the same amount of FPGA resources as others CGA. 

However, it’s more practical to FPGA implementation 

since it has uniform cell type. 

The comparison in term of speed and hardware 

resources to others compact GA implementation is shown 

in Table 3. CCGA delivers the same speed and requires 

the compatible hardware resources. 

Figure 5. 32-bit ”OneMax” simulation results 

 

 

Figure 6. F1 simulation results 

 
Figure 7. F2 simulation results 

 

 
TABLE 1  Comparison of the speed up 

 
 OneMax F1 F2 

CGA 43362 126967 80027 

CoCGA 11492 25542 27757 

CGA 12321 28853 26591 

Speedup 

CoCGA/CGA 

3.77 4.97 2.88 

Speedup 

CCGA/CGA 

3.51 4.44 3.00 

 
 

 

 

 

 

 
 



TABLE 2 
FPGA HARDWARE RESOURCE XILINX VIRTEX-5 LX50 

Network 

size 

  

FPGA resources for CCGA with 32-bit 

chromosome on 

Xilinx Vertex-5 LX50 

 

  CCGA 

 

1 

Slice Registers 

used Flip-Flops 
621 

Slice LUTs 

used as Logic 
1,932 

Total equivalent 

gate count 
18,224 

Maximum 

Frequency 
290Mh 

 

2x2 

Slice Registers 

used Flip-Flops 
1,642 

Slice LUTs 

used as Logic 
5,506 

Total equivalent 

gate count 
49,204 

Maximum 

Frequency 
280Mh 

 

 

TABLE 3  COMPARISON OF FPGA RESOURCES 
 

 
mCGA 

[9] 

CGA 

[10] 

CoCGA 

normal 

cell [10] 

CoCGA 

leader 

cell [10] 

CCGA 

No. of 

flip-flop 
712 541 598 168 621 

4-input 

LUT 
1612 1065 1296 359 1932 

Total 

equivalet 

gate count 

18732 12602 17034 4651 18224 

Max. 

frequency 
- 

330 

Mhz 

330 

Mhz 

300 

Mhz 

300 

Mhz 

 

5. Conclusion 
 

In this paper, the CCGA is presented. The results 

provide initial evidence that CCGA can outperform the 

normal compact GA and can provide compatible results to 

the CoCGA with more applicable to FPGA 

implementation due to unified cell type. The CCGA 

delivers a more search performance with the adaptive 

probability vector recombination. For intrinsic evolvable  

or adaptive hardware, the CCGA can be used for a 

hardware GA for real-time evolution and adaptation with 

increased quality of search results.  In addition, CCGA 

can address a scalability issue of genetic algorithm with 

problem size since CCGA can scale up with problem size 

by increasing network size as shown in Table 1.  
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