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Abstract— A GPU-style processor has large amount of 

processing power on a given die compared to a general purpose 

processor.  However, a Graphic Processing Unit must be 

executed in lock-step where a group of cores execute the same 

instruction.  This constraint puts a real limitation on 

programming of a GPU.  This work proposed a design of a 

processor that unifies the execution of Graphic Processing Units 

and a general purpose processor. The discussion of programming 

model of vectorised instructions and the extension to allow multi-

cores to run independently is presented.  The proposed design 

required only 3% additional resource compared to the original 

design. This design is suitable for embedded applications. 

Keywords—Graphic Processing Units; Softcore; General 

Purpose GPU; Programming GPU 

I.  INTRODUCTION  

GPU has become “standard” in high performance 
computing. Early days of computing saw the availability of 
GPU allowed real-time applications such as video decoding 
[1]. As time progresses, GPU design has been more mature, 
there are attempts to make it more general purpose [2]. GPU 
has advantage of energy efficiency in terms of computing 
power per watt.  It has been an important factor for media 
applications in mobile devices and its energy efficiency has 
been studied [3]. However, programming a GPU required 
special skill [4].  It is also difficult to do general purpose 
computing on a GPU. Therefore, GPU becomes a second 
processor to a general purpose processor. Having both CPU 
and GPU in one machine serves the purpose of running mixed 
work environment and media centric applications. This 
arrangement has become a de facto standard of PCs, notebooks 
and mobile phones. 

We would like to unify two processors.  The advantage 
would be that it eliminates interfacing between the two. Rather 
than two processors communicating by sharing a common 
memory, it becomes one processor (with many cores) with 
uniform memory. Programming would be more flexible and 
less idiosyncratic.  Performance would be higher too (by the 
advantage of being on the same die). 

Previously, we have designed a GPU-style softcore [5] 
intended for embedded applications (hence it is simple).  It has 
the instruction set that is similar to a GPU.  The execution is in 
a Single Instruction Multiple Data (SIMD) mode. All cores 
execute same instruction but perform on different data.  To 

eliminate the memory access conflict, our design has all cores 
go through a special unit, called Local Data Store, which 
serialises multiple accesses to the memory. This is quite 
effective.   

In order the make it a general purpose processor, this 
softcore should behave as a multi-core processor.  The design 
has been extended by additional instructions. The execution 
cycle is changed to a Multiple Instruction Multiple Data 
(MIMD) mode [6]. How to reconcile the two instruction sets 
(one of a vectorised operation, another of control-oriented 
operation) is the challenge of this work.  

II. GPU SOFTCORE 

A. Procesor Organization 

This is a simple GPU with four 32-bit cores.  It contains 
four Processing Elements (PE or core). Each PE has 32 
registers, one ALU and Local Data Store units (LDS).  It also 
includes a 32-bit random number generator organised as 4 by 
8-bit.  It has 1Kx32 bits of memory. The memory is interfaced 
with processor through a buffer unit (BUF) connected to LDS.  
LDS communicates to all PEs in parallel.  The processor 
operates in Single Instruction Multiple Data (SIMD) mode.  
That is, every PE runs the same program in synchrony.  It has 
only one control unit, one Program Counter (PC) and one 
Instruction Register (IR).  Its instruction has fixed size of 32 
bits.   

 

Fig. 1. The diagram of GPU organization. 



B. Instruction Set 

The Processing Elements perform Arithmetic and Logic 
with three-address format instructions, such as: 

add r3 r1 r2 

For branching, the command processor (control unit) 
performs these instructions: 

jmp @ads 

jz r @ads 

jnz r @ads 

 
The conditional jump instructions read the result stored in a 

register. In SIMD mode, the condition in that register of all PEs 
must be satisfied for a branch to be taken. 

The Local Data Store unit transfers data between PEs and 
the main memory. It joins a narrow 32-bit bus, with a wide 
32x4 -bit bus to PEs. It also performs broadcast from one of its 
register to all PEs.   

ld/st ls @ads           load/store local-memory 

ldr/str r                   load/store LDS-PE 

ldw @ads                      load memory to all LDS 

bc r ls                        broadcast LDS-PE 

III. OPERATIONS IN SIMD MODE 

This section will begin with describing how the vectorised 
operations work and then how to incorporate control-oriented 
operations on the same design.  

To perform a control-flow, as all cores must be 
synchronised, they must be doing exactly the same work 
independently. The condition to transfer the control must be 
that all cores meet the condition.  For example, an n-time loop. 

  ldw @n    ; load Mem[n] to all LDS 

  ldr 2     ; use reg 2 

:loop 

  ...       ; body of loop 

  dec 2 

  jnz 2 @loop 

 

Register 2 of all cores are doing the same work and jnz 
performs test for zero on ALL register 2.  Because of the 
restriction on Single Instruction execution, some conditional 
must be carefully written so that only the data is different 
(between cores) but the instruction that being executed must be 
the same.  For example, move-if-true is such a conditional 
instruction. 

mv_t r3 r1 r2  

if R[3] is true then move R[2] to R[1]. The result will depend 
on the value of R[3] of each core but they all execute this 
instruction. In a program where each core computes a different 
point and it might terminate the loop at different time. To allow 
this different termination, we use move-if-true to update the 
value until the termination time (different between cores) but 
all cores continue to run until completion. The core that is 
already finished will not further update the value (to prevent 
the overflow). So, when the loop is complete, each core has x,y 

that terminates at the different time. The following code 
snippet illustrates this situation. This is the pseudo code and the 
assembly code for this operation. 

  while x*x + y*y < bound 
      compute next x,y   
 
:while 

  ; (x*x + y*y < bound) stored to R[8] 

  ... 

  jz 8 @exit  ; jump all cores complete 

  ... 

  ; compute next x',y' 

  mv_t 8 x x' ; update x  

  mv_t 8 y y' ; update y  

  jmp @while 

:exit 

 

So, for vectorised operations, SIMD mode is very good. It 
is also good for synchronised loop.  But for general conditional 
(such as if..then) the program must be carefully written and 
when it is not synchronised, it is difficult and it wastes a lot of 
cycles (hence waste energy) to run until all cores come to 
completion. 

IV. OPERATIONS IN MULTI-CORE MODE 

How to extend this GPU to run in MIMD mode?  First and 
foremost, each core must have its own trace of execution. So, 
each core must contain its own program counter (PC) and 
Instruction Register (IR). The instruction that alters control-
flow must be specific to individual core rather than having a 
synchronised execution over all cores. All vectorised arithmetic 
and logic instructions do not require any change when they are 
operated independently. Lastly, the access to memory must 
include independent load and store to registers of each core.  
This can go through Local Data Store. The additional 
instructions that allow the processor to run in MIMD mode will 
be described next. 

Let us start with the memory access.  The load/store 
instructions to LDS are: 

ld k @ads        load Mem[ads] to LDS of core k 

For MIMD mode, this instruction will affect only the core k.  
Other cores will take this instruction as no-operation.   

ldr r      load LDS[k] to R[r] 

str r      store R[r] to LDS[k] 

Each core can execute these instructions independently.   

st @ads k     store LDS of core k to Mem[ads] 

Now, this instruction can cause memory access conflict 
when it runs in MIMD mode.  Local Data Store unit must 
resolve this event.  When LDS requests a write to memory, it 
must serialise the access.  If there are more than one core 
request a write, then only one core is granted the request, all 
other cores must be stalled. And this will take care of LDS 
memory access in MIMD mode.  



For control-flow instructions, a new mode must be created 

(beside synchronised execution).  x_jz and x_jnz behave 
similar to a normal processor, they check only the condition of 
their own registers. 

x_jz r @ads if R[r] == 0 then PC = ads 

x_jnz r @ads if R[r] != 0 then PC = ads 

One more instruction is sync.  This is to synchronise all 
cores. It is important to be able to synchronise all cores when 
running a multi-core program. 

sync          wait for all cores to reach this point   

To illustrate the extended processor running in MIMD 
mode, the Mandelbrot program will be used.  It is slightly 
changed in order to run each core independently. This loop 
computes one pixel. 

:while 

  ; (x*x + y*y < bound) stored to R[8] 

  ... 

  x_jz 8 @exit     ; independent jump 

  ... 

  ; compute next x',y' 

  mov x x'         ; update x 

  mov y y'    ; update y 

  jmp @while 

:exit 

 

The next example shows a complex if-then-else sequence 
that makes it difficult to write a vectorised code running on a 
GPU. This is a part of Compact Genetic Algorithm [7] that 
update the probability vector (p[i]) according to the pattern of 
two genes (a[i], b[i]) and their fitness (fa, fb). There are four 
cases to update p[i].   

for i = 1 to k do 

   if fa >= fb then 

      if a[i] = 1 and b[i] = 0 then 

         p[i] = min(1, p[i] + 1/n) 

      if a[i] = 0 and b[i] = 1 then 

         p[i] = max(0, p[i) - 1/n) 

   else 

      if a[i] = 1 and b[i] = 0 then 

         p[i] = max(0, p[i] - 1/n) 

      if a[i] = 0 and b[i] = 1 then 

         p[i] = min(1, p[i) + 1/n) 

 

To write a vectorised code, we decompose the operations 
into logical operations which are executed in lock-step, as 
shown below. 

; select & update 

 

xor 29 11 12  ; lb[t][i]= a[t][i] ^ b[t][i] 

and 30 29 12  ; mb[t][i]= lb[t][i] & b[t][i] 

lt 28 21 22      

jnz 28 @check 

xor 30 30 31  ; mb[t][i] ^= fa < fb ? 1 : 0 

 

:check 

; check upper bound 

; lb[t][i]= ~ub[t][i]|mb[t][i] ? lb[t][i]:0 

and 28 3 4 

and 28 28 5 

and 28 28 6 

xor 28 28 31 

or 28 28 30 

and 29 29 28     

 

:update 

; 4-bit adder 

... 

and 29 30 4 

xor 4 30 4 

and 28 27 4 

xor 4 27 4 

or 27 29 28 

... 

xor 6 30 6 

xor 6 27 6 

 

In contrast to the vectorised code, a multi-core version is 
simply following the pseudo code. Here is a snippet of the code 
for the first case. Please note that at the end of the loop, we 
synchronise all cores. 

:loop 

... 

ge 11 9 10    ; fa >= fb 

jz 11 @else 

 

x_jz 1 @L1 

x_jnz 2 @ending 

inc 0    ; a[i]==1 && b[i]==0, p[i]++ 

lt 11 12 0    ; 255 < p[i], check up-bound 

mv_t 11 0 12  ; p[i] = 255 

jmp @ending 

:L1     ; next case ... 

... 

:ending    ; check terminate 

sync 

... 

jnz 11 @loop 
 

From the above code sequence, it becomes clear that this is 
more like an ordinary (non-vectorised) code.  Each core will 
continue its own path without concerning other cores. 

V. EXPERIMENTS 

We ran two benchmark programs: matrix multiplication 
and Mandelbrot.  Matrix multiplication is 4x4 and the program 
has fully unrolled the loop so it becomes essentially a straight 
line code.  Mandelbrot calculation on the grid size 64x64 with 
fixed point arithmetic with 12 bits of fractional part.    Both 
benchmarks were run in two modes: SIMD and MIMD.  Table 
1 reports the number of execution cycles required. 

TABLE I.  THE NUMBER OF CYCLES REQUIRED TO RUN BENCHMARKS  

Program SIMD MIMD 

Matrix 

Multiplication 
1,406 1,406 

Mandelbrot 15,350,074 13,476,882 

 



Because matrix multiplication program does not contain 
any branch, the results from both modes are the same.  For 
Mandelbrot program the MIMD mode is faster.  This is due to 
the fact that in MIMD mode each PE can finish its loop 
independently while in SIMD mode all PEs have to 
synchronise by waiting for the longest computation to finish.   

Adding the MIMD execution mode into a GPU involves a 
tradeoff between flexibility and resources.  Each PE has its 
own control unit and the memory controller.  The question is 
how much additional resource is needed and whether it worth 
the tradeoff?  The design in [6] has been synthesized on the 
Field Programmable Gate Array, Xilinx Spartan3, XC3 
S1500L.  The amount of resource used is shown in Table 2. To 
measure the resource, we convert the synthesis result into the 
number of gates.  If we assume that a register is equivalent to 8 
gates, LUT is 6 gates, and a multiplier unit is 5,000 gates. The 
total gate count for SIMD GPU is 230,708 gates. Breaking 
down the detail of the resource used, the PE cores consume 
most resource, 96%, while the control unit is only 0.4%.  So, 
duplicating the control unit to each core is not expensive. To 
understand why the control unit is very small, one has to 
consider that the core design is really simple, no pipeline, 
multi-cycle execution. Therefore the control unit is simple.  

To add MIMD execution mode, we assume the control unit 
will be larger, 2 times for each core due to additional 
instructions and addressing modes. The memory controller also 
needs to be duplicated for each core as they can access the 
memory independently.  The estimate result for this proposed 
design is shown in Table 2.  The conclusion is that it is larger 
than the original design by only 3%.  This is an excellent trade 
off. 

 

VI. CONCLUSION 

This work proposed a method to improve GPU-style 
processors in order to make them more flexible in 
programming. By extending instructions and allow each 
Processing Element to execute independently, the processor 
can perform similar to multi-core processors.  The effect of the 
new mode of execution has been demonstrated.  Although the 
proposed design uses more resource, it is shown that this 
additional resource is small, only 3%. 

The resource for this design is available online at 
http://www.cp.eng.chula.ac.th/faculty/pjw/project/npu.htm.  
The site contains a simulator and an assembler, including 
benchmark programs. 
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TABLE II 

BREAKDOWN OF THE SYNTHESIS RESULT OF THE ORIGINAL GPU AND THE PROPOSED DESIGN 

 GPU 4 PEs Control U LDS & 

PC 

Random Memory 

Controller 

Registers 4576 4232 44 268 32 0 

4 input LUTs 12350 11620 92 593 1 44 

Slices 8430 8035 56 300 16 23 

Multiplier Units 24 24 0 0 0 0 

       

Est. Gate 230708 223576 904 5702 262 264 

Gate % 100.00 96.91 0.39 2.47 0.11 0.11 

       

 GPU2      

Est. Gate 237828 223576 7232 5702 262 1056 

Gate % 100.00 94.01 3.04 2.40 0.11 0.44 

 


