
 Abstract – Order acceptance with capacity balance problems 

require trading off between over- and under capacity 

utilization in order to gain more profits. This research 

proposes a new over- and under capacity tradeoff order 

acceptance model and propose adaptations of node based 

estimation of distribution algorithm to solve the order 

acceptance decisions in multi-process environments. The 

results show that node based coincidence algorithm is a 

potential algorithm which can maximize both profit and can 

maximize the capacity used at the same time. 
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I.  INTRODUCTION 
 

 The order acceptance and rejection decision problems 

have gained increasing attention over the past few decades. 

Manufacturers favor among the orders that they accept for 

processing for a variety of reasons including market 

focuses, competitive advantages and capacity limitations. 

While surplus of orders might be hailed by a manufacturing 

or service facility, demand that exceeds capacity brings 

with it some hard choices. There is an important trade-off 

between the profit-enhancing revenue of an order, and the 

costs of capacity that it may distract with the other jobs. In 

addition, late delivery of some orders may result in 

penalties such as reduction of revenues and long-term 

losses of trust and market share. In a competitive market, 

the importance of on-time delivery may make it cost- and 

profit-effective to reject some orders [1][2]. 

  

 Order acceptance and scheduling (OAS) problem is 

classified as a multi-dimensional knapsack problem  which 

is a well-known NP hard problem. Additionally, there also 

exists the necessity of order sequencing which makes it 

much more difficult than the general knapsack problems. 

For example, the difference of order sequencing can result 

in difference profit level[3][4]. This problem is divided into 

two research group, which are order acceptance (OA) and 

order rejection (OR). Whether acceptance or rejection, both 

group of research have one similar key issue which is for 

solving the selecting and sequencing order problem to meet 

the production capacity constraint with the best profit 

result. From the order rejection perspective, the main 

objective is to minimize penalty of rejection such as 

minimizing make span, completion time, machine capacity 

cost, etc. On the other hand, from order acceptance 

perspectives, the main objective is rather on the 

maximization of profits, such as maximize profit, capacity 

utilization, etc. [1] 

The penalties of rejection in OR problems indirectly 

reflect the profit in the OA problems. For example, the 

make span minimizing in OR can result in increasing of the 

capacity utilization in OA. Accordingly, when the capacity 

cost is fixed, it is not necessary to calculate both penalty 

and profit at the same time. However, in many situations, 

manufacturers could not raise the capacity level to support 

more orders in order to gain higher profits, they need to 

work overtime (OT) which inevitably require higher 

production cost. Nevertheless, it is not necessary for the 

manufactures to utilize all of the OT capacity that they have 

in order to get the best profits, especially in multi-product 

with multi-process production lines, which is not easy to 

re-balance the production lines. Consequently, it is 

necessary to choose the series of orders that are not only 

profitable but also balance in capacity utilization. 

  

Trading off between underutilization and 

overutilization is not a new concept in OAS problem, it was 

used in the upstream of order acceptance process by 

microeconomic theories for pricing, making decision in 

capacity reallocation and selecting the profitable orders 

under the time constraint [2]. However, there is no existing 

research that downstream applies about trading off between 

under capacity and over capacity utilization. This is the 

first research that use two conflicting capacity constraint as 

the objectives in OAS problem to select and sequence the 

orders to maximize the profits while maintaining the 

balance of the production capacities at the same time. 

 

 This article introduces the application of node-based 

estimation of distribution algorithms (EDA) [5][6] for 

solving the order acceptance with capacity balancing 

problem. The contribution of this work is to demonstrate 

new approaches to the order acceptance problem that 

compete successfully with previously purposed genetic 

algorithm especially in larger problems.  

 

 The remaining sections of this paper are organized as 

follows. The problem model and the procedures are 

introduced in Section II. The results are discussed in 

Section III. Finally, Section IV concludes this work. 
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II. METHODOLOGY 

 

A.  Order Acceptance Model 

 

 In practice, most production lines are balanced such 

that they are suitable with standard products that have 

higher demand. Each process utilize the balanced capacity 

such that similar kind of product can be produce smoothly. 

Unfortunately, these production lines usually lose their 

strength when facing unusual products that are not 

frequently ordered, it results in inefficacy use of working 

capacity. Therefore, the prices of lower demand products 

become higher in order to compensate the unusual 

production times and materials in the stocks. The unused 

leftover capacities become inevitable costs that the 

manufacturers have to spend. However, the manufactures 

can choose to use the OT capacities in some processes to 

accept more profitable orders and to avoid the under 

capacities penalty.  

 

The order acceptance model in this research consider 

not only the under capacity utilizations but also allow the 

over capacity utilizations in multi-process environment. 

This model is on an assumption that the employees can 

work totally 8 hours per day and can have extra 2 hours 

OT. In addition, there is no waiting time involved in the 

model. Figure 1 illustrates the under and over capacity 

utilization of orders. Each order needs to be manufactured 

in 5 difference processes which required difference time 

capacities. The total capacity for each process is 8 hours 

plus addition 2 extra hours. The capacity plan accumulate 

the working capacities of each order and its processes. 

Form figure 1, the order A, B and C utilize up to 9 hours in 

the process 3, 4 and 5, while in process 3, the capacity is 1 

hour wasted, yet the order D should be rejected as it 

overuse the total capacity for the process 3 and 4. It can be 

clearly seen that without the order C and D, the utilization 

of this plan would be worse as it wastes totally 10 hours 

capacity in five processes. The capacity plan could be 

better if order C is rejected as there is no leftover capacity 

and the capacities are not over used. 

 

 
Fig. 1.  The under and over capacity utilization of orders. 

 

 

The order of set i = (1,2,…,i), where i is one of the k 

product type and profit per unit is Pik . Each order will be 

processed through set N = (1,2,…,n), production unit. An 

order i is said to be early if finish period t is equal or less 

than due date d, t-Di ≤ 0 and overdue if more than the due 

date t-Di > 0. Product k utilizes capacity 𝐶𝑇𝑃𝑛𝑡  as 𝑒𝑖𝑗𝑘𝑛𝑡  

per unit, so the orders will occupy total production capacity 

∑ 𝑒𝑘𝑞𝑖𝑘𝑡𝑖  for ∀𝑡. Each order for an item consist of several 

processes.  𝑅𝑇𝑛  and 𝑂𝑇𝑛  is the regular working time and 

overtime allowed in a day. The model can be defined as 

follow: 
 

Capacity Constraint  

𝑅𝑇𝑛 Total capacity of workstation n 

𝑂𝑇𝑛 Total overtime capacity of workstation n 

𝐶𝑇𝑃𝑛𝑡  Unassigned capacity of workstation n at period t 

(t=1,…,T)  

𝑒𝑖𝑗𝑘𝑛𝑡  Consumption of 𝐶𝑇𝑃𝑡  for Product k in Order i by 

Job j 

𝑓𝑖𝑗𝑘𝑛𝑡  Time unit that workstation n consume 𝐶𝑇𝑃𝑡  for 

Product k in Order i by Job j at period t 

𝑔𝑛 Cost of Unassigned capacity of workstation n 

𝐶𝑇𝑃𝑛 per time unit 

α1n Cost rate of stretching the production capacity at 

Workstation n  

𝛼𝑛 Cost Rate of not using the whole capacity at 

Workstation n  

dnt
+  Amount of over capacity production at 

workstation n in period t 

dnt
−  Amount of under capacity production at 

workstation n in period t 

 

Order Constraint 

𝑝𝑖𝑘  Profit of order i 

𝑞𝑖𝑘𝑡  Demand quantity of product k in order i due at 

period t    

 

Decision Constraint 

𝑅𝑖𝑘  =  1, if the order i for product k is accepted  

 =     0, otherwise 

𝐹𝑖𝑗𝑘𝑡𝑛  =  1, if the order i for product k is produced         

               at workstation n by job j in time period t 

  =     0, otherwise 

 

Maximize Z = ∑ ∑ ∑ 𝑝𝑖𝑘𝑞𝑖𝑘𝑡𝑅𝑖𝑘  𝑘𝑖𝑡          

       −(∑ ∑ α1ndnt
+ + α2ndnt

−
nt )𝑔𝑛   

  Profit   −  Minimizing the capacity variation  (1) 

 

Subject to 

 

Workstation-level activities Constraint   

∑ ∑ ∑ 𝑒𝑘𝑖𝑗𝑞𝑖𝑘𝑡 ×𝑡𝑖𝑘 𝑅𝑖𝑘𝑡𝑛 ≤ ∑ 𝐶𝑇𝑃𝑛𝑡𝑡     ∀𝑛   (2)            

𝑑𝑛𝑡
− = 𝑅𝑇𝑛 − (𝑂𝑇𝑛 − 𝐶𝑇𝑃𝑛𝑡) − ∑ ∑ 𝑒𝑖𝑗𝑘𝑞𝑖𝑘𝑡𝑓𝑖𝑘𝑡𝑛𝑛𝑡   

             ∀𝑛   (3)         

dnt
+ = ∑ ∑ 𝑒𝑖𝑗𝑘𝑞𝑖𝑘𝑡𝑓𝑖𝑘𝑡𝑛 − 𝑅𝑇𝑛𝑛𝑡    ∀𝑛   (4)            
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Order-level activities Constraint  

𝑓𝑘𝑖𝑗𝑞𝑖𝑘𝑡 ≥ 𝐹𝑖𝑘𝑡𝑛     ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡   (5) 

𝑓𝑘𝑖𝑗𝑞𝑖𝑘𝑡 ≤ 𝑒𝑘𝑖𝑗𝑞𝑖𝑘𝑡𝐹𝑖𝑘𝑡𝑛   ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡   (6) 

∑ 𝑡𝐹𝑖|𝑗|𝑘𝑛𝑡𝑛 ≤ 𝐷𝑖𝑅𝑖𝑘    ∀𝑖, 𝑘, 𝑡    (7)            

∑ ∑ 𝑓𝑘𝑗(𝑖−1)𝑞𝑖𝑘𝑡´𝑡𝑛 + ∑ 𝑓𝑖𝑘𝑡𝑞𝑖𝑘𝑡𝑛 ≥ ∑ 𝑒𝑘𝑗(𝑖−1)𝑞𝑖𝑘𝑡𝑛 𝐹𝑖𝑘𝑡𝑛

        ∀𝑖/{1}, 𝑘, 𝑡   (8) 

 

Binary and non-negativity Constraint   

𝑅𝑖𝑘     = 0𝑜𝑟1      ∀𝑖, 𝑘    (9)            

𝐹𝑖𝑗𝑘𝑛𝑡 = 0𝑜𝑟1      ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡       (10)            

𝑓𝑖𝑗𝑘𝑛𝑡 ≥ 0      ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡             (11) 

 

The key objective is to maximize the overall profit. 

The model helps to unify two decisions: which orders to 

accept and how much capacity is required of each resource 

in order to complete an accepted order. The secondary 

research objective is to balance the usage of capacity in 

production lines by tradeoff the wage penalty between over 

and under capacity utilization, thus this problem is 

considered to be a three objectives optimization problem. 

However, the three objectives are bind into one single 

objective. The objective function consists of three parts; (i) 

to maximize the total profit (ii) to minimize the residual 

working capacity and (iii) to minimize the OT capacity. 

Generally speaking, the objective is to choose the set and 

sequence of the profitable orders using as much working 

capacity as well as less OT as possible. According to this 

term the leftover available capacities have some certain 

penalty cost while the OT usages also cause extra cost. The 

first set of constraints is established to ensure that the 

whole capacity of plant is not violated. Constraint (3) and 

(4) were set to calculate the penalty of not using the whole 

capacity and stretching the production capacity. 

Constraints (5) and (6) set the Fijkrt decision variables to 

either 1 or 0. The Fijkrt variables are the indicator variable; 

they take a value of 1 when fijkrt > 0 indicating that job j of 

item i is being processed on resource k in time period t, 

otherwise they take a value of 0. The Fijkrt variables are 

used to ensure the precedence relationship. The constraint 

set (7) ensures that when an order for an item is accepted, 

the completion time of the last job of that order does not 

exceed the order due date. The constraint sets (8) impose 

precedence restrictions, to ensure that job j of item i can be 

processed in period t only after completing job j of item i-

1. The constraints (9) and (10) are the binary constraints 

and constraints (11) to negativity constraints. 

 

B.  Solution Procedures 

 

 This work compares the result of GA with two node 

based EDAs including NHBSA, NB-COIN. From 

preliminarily study, the results of the EDAs for solving OA 

in single machine are too far better than GA and its 

benchmarks [6], therefore this paper only compare the 

results with GA.  

1.  Genetic Algorithm 

 

 The first procedure is an ordering GA with Position-

based crossover (PBX) [7] which preserve not only 

absolute order substructures but also preserve relative 

order substructures from two parents. Figure 2 illustrates 

the steps and the example of PBX. The proto offspring 1 

mimics the absolute order substructures from the parent 1 

and then imitates the relative sequence order of the 

remaining substructures from the parent 2 and vice versa.  

 

For this problem, the chromosomes are sample 

solutions, that is, sequenced subsets of jobs. The diversity 

is maintained by ancestor replacement. If new candidate is 

better than its ancestors it is used to replace one of its own 

parents. In this study, the local search is also applied to the 

new candidates with improvement. The swapping and 

insertion operations are randomly applied to the candidates 

until the candidates are no longer improved. The pseudo 

code of GA are as follows:- 

 

Step 1. Randomly generate the population. 

Step 2. Evaluate the population. 

Step 3. Perform crossover and mutation. If the newly 

generated candidate is better than its ancestors, then 

perform the local search until the candidate is no 

longer improved. 

Step 4. Repeat Step 3 until the maximum number of 

generation is reached.  

 

 
Fig. 2.  Position-based crossover (PBX). 

 

  

 

 

 

 Although, the encoded solution of GA is a full set of 

the jobs in the pool. However, the evaluation process 

considers only the accepted jobs. The evaluation process 



 

does not only evaluate the jobs sequence, but also re-sorts 

the jobs sequences to separate the accepted and rejected 

jobs as illustrated in the figure 3. The sequence of the 

accepted jobs are kept in the accepted pool while the 

remaining jobs are kept in the rejected pool. The candidate 

solution is re-sorted by concatenating the accepted pool 

with the rejected pool.  

 

 
Fig. 3.  Evaluation with cutting off. 

 

2.  Estimation of Distribution Algorithms 

 

 The EDAs used in this research are Node Histogram 

Based Sampling Algorithm (NHBSA) and Node Based 

Coincidence Algorithm (NB-COIN). They generate 

solution strings in sequences, ensuring that only valid 

permutations are sampled. The differences of these two 

node based EDAs are the learning methods. NHBSA 

belongs to the ad hoc learning methods, while NB-COIN 

belongs to the incremental learning methods. The pseudo 

code of EDAs are simplified as follows:- 

 

Step 1. Initialize the model 

Step 2. Sample the population 

Step 3. Evaluate the population 

Step 4. Select candidates 

Step 5. Update the model 

Step 6. Repeat steps 2 to 5 until terminated. 

 

 Although, GA and EDAs are in the same group of 

evolutionary algorithms, however, the evaluation process 

and the updating process of EDAs for the order acceptance 

are slightly different. GA needs to maintain the genetic 

materials, therefore the whole set of jobs need to be 

maintained. However, EDAs can reproduce the missing 

sequences by themselves, in addition, the sequences of the 

rejected pool are considered to be the useless information, 

therefore, EDAs only update the models from the accepted 

sequences of jobs. Consequently the evaluation process 

doesn’t need to concatenate the rejected pool with the 

accepted pool. The evaluation processes in the figure 2 

simply use the accepted pool as the candidate for the EDAs.  

2.1. Node Histogram Based Sampling Algorithm 

NHBSA was proposed by Tsutsui in 2006.[9] It 

utilizes Node Histogram Matrix (NHM) to learn the mutual 

information of absolute position. Matrix 𝑁𝐻𝑀 =  [ℎ𝑖𝑗  ], 

where ℎ𝑖𝑗  =  𝑃(𝜎𝑖  =  𝑗) and 𝑖, 𝑗 ∈  {1, 2, . . . , 𝑛} . Hence, 

ℎ𝑖𝑗 represents the probability of the index 𝑗 to be in the i-th 

position in the selected individuals. ℎ𝑖𝑗 is added to a ε value 

denoted as  

                                    𝜀 =
𝑁

𝑛 
𝐵𝑟𝑎𝑡𝑖𝑜                                     (12) 

to control the pressure in sampling and to avoid individuals 

with probability 0. 

 

2.4. Node Based Coincidence Algorithm 

 

NB-COIN [5] is a variation of coincidence algorithm 

(COIN) [8] proposed by Wattanapornprom and 

Chongstitvatana in 2013. It learns substructures from 

absolute positions, similar to NHBSA. The matrix Hxy 

represents the probability of y found in the absolute 

position x. The update equation is 
 

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) +
𝑘

(𝑛)
(𝑟𝑥𝑦(𝑡 + 1) − 𝑝𝑥𝑦(𝑡 + 1)) 

+
𝑘

(𝑛)2 (∑ 𝑝𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 − ∑ 𝑟𝑥𝑗(𝑡 + 1)𝑛

𝑗=1 ) ,                 (13) 

 

where k denotes the learning step, n is the problem size, rxy 

is the number of xy found in the better-group, and pxy is the 

number of xy found in the worse-group. The incremental 

and detrimental step is 
𝑘

(𝑛−1)
,  and the term 

𝑘

(𝑛−1)2 (∑ 𝑝𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 − ∑ 𝑟𝑥𝑗(𝑡 + 1)𝑛

𝑗=1 )  represents the 

adjustment of all other Hxj, where 𝑗 ≠ 𝑥 and 𝑗 ≠ 𝑦. 

 

 NB-COIN has a special characteristic, that is, it not only 

learns from the better candidates but also learns from the 

poorer candidates as well. After each population was 

evaluated and ranked, two groups of candidates are 

selected according to their fitness values: better-group and 

worse-group. The better-group is selected from the top c% 

of the rank and is used as a reward, and Hxy is increased for 

every pair of xy found in this group. The punishment is a 

decrease in Hxy for every pair of xy found in the worse 

group of the bottom c% of the population rank. 

 

C.  Test Problems and Experimental Design 

 

The list of products and their profit per piece were 

randomly generated. The generated profits are ranged 

between 5 to 15 currency units per piece. Then these profit 

attributes were used to generate the capacity used for each 

product such that producing the least profitable product 

would utilize the most balance capacity in each working 

process, while the random time were added according to 

their profits. The capacities used by each processes are 

ranged between 0.1 to 1 pieces per minute.  



 

 

The ten problems of size 50, 75 and 100 orders were also 

randomly generated according to the product and their 

profits such that the less profitable products have more 

chance to be ordered. Each order was generated from a log-

normal distribution with an underlying normal distribution 

with mean 0 and standard deviation 1. The quantities for 

each order were randomly generated using the range 

between 1×1000 pieces and 12×1000 pieces. Each product 

has to be processed through 5 parallel production units 

which means that there are totally 5 processes × 5 parallel 

machines for each processes. The maximum capacity were 

set to two weeks. Each working day has eight working 

hours plus extra two OT hours. The due dates of each order 

were generated from a uniform distribution plus calculated 

lead-time for each of the order. These parameters were 

imitated from the existent manufactures from Thailand. 

Therefore, the wage penalty for this problem was set to 300 

baht and OT cost was set to 450 baht per worker per one 

production unit per day.  

 

To compare the results, each algorithm was given the 

same population sizes and maximum number of 

generations which are equal to the problem size × 2. The 

probabilities of crossover and mutation of GA are equal to 

0.8 and 0.2 respectively. The learning steps, k, of NB-

COIN is 0.05. The bias ratio, 𝐵𝑟𝑎𝑡𝑖𝑜, of NHBSA is 0.005. 

The selection pressure of GA and NHBSA is 50% of the 

whole population, while NB-COIN uses 25% of the top 

ranks for rewards and 25% of the bottom ranks for 

punishment. Test programs were coded in Lazarus and ran 

on Mac OS 10.4 on Intel Pentium Core i5 2.50 GHz 

processor with 4 GB of RAM.  

 

The performances of GA and EDAs are compared in 

terms of average of the best actual profits and percentage 

of over and under capacity utilization.  

 

 

III. RESULTS 

 

 Table I compares the performance of the benchmark 

algorithms. The capacity utilization is the wage penalty 

already deducted from the actual profit. Figure 4 and 5 

compare the gained profit and wage penalty in a problem 

with 50 orders. Since the solutions of NB-COIN and 

NHBSA were generated from generation to generation, 

without keeping the elitists, the best solution in each 

generation does not necessary increasing.  

 

From the table I, it can be clearly seen that the node 

based EDAs yield better results compared to GA with local 

search. NB-COIN can find the best solution in every 

benchmark as it can seek for sequences of subset order 

which gain the best profits. In addition, NB-COIN can 

utilize the full capacity of the working hours. It can also 

find the set of profitable orders which could utilize more 

OT capacity. However, from figure 4, NHBSA can find 

better solutions than NB-COIN in the very beginning 

generation. It can find competitive solutions with less 

number of function evaluation. Unfortunately, NHBSA 

was trapped in some pitfalls whereas it cannot combine the 

solutions with higher profits such that satisfy the orders due 

dates and capacity utilizations. The generated test problems 

were design such that the lowest profitable product utilize 

the most balanced capacity. On the other hand, the most 

 

 
Fig. 4.  Performance of NB-COIN, NHBSA and GA in maximizing the 

profit in the order acceptance with capacity balancing problems. 

 
 

 
Fig. 5.  Performance of NB-COIN, NHBSA and GA in minimizing the 
wage penalty in the order acceptance with capacity balancing problems. 

 

profitable product leave more capacity leftover. The 

greedier profit maximization would results in the worse 

capacity utilization. 

 

The unique characteristic of NB-COIN is that it not 

only learn from the good solutions, but also learn from the 

poor solutions. This characteristic enables NB-COIN to 
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find not only the good quality solutions, but also the diverse 

of solutions [9], which is the fundamental characteristic to 

solve multimodal and multi-objective problems. The 

incremental learning method enables NB-COIN to 

maintain the high potential substructure to be composed. 

NB-COIN simply estimated the sequence of the accepted 

orders in which the good sequences of orders may be 

conflict with each other.  

 

 

 

IV. CONCLUSION 

 

 Node based EDAs have proved themselves as the 

competitive procedure in solving the combinatorial 

problems. This article propose an innovative adaptation of 

node based EDAs to solve the order acceptance problem in 

which the solution string are sub-sequences of the all given 

jobs. From the empirical study, NB-COIN, which is a node 

based incremental learning method, is a competitive 

algorithm to solve this problem. 

 

 

 

TABLE I 

PERFORMANCE OF GA, NHBSA AND NB-COIN IN ORDER ACCEPTANCE WITH CAPACITY BALANCING PROBLEMS 

problem 

size 

GA+LS NHBSA NB-COIN 

profit 

(baht) 

% under 

capacity 

% over 

capacity 

profit 

(baht) 

% under 

capacity 

% over 

capacity 

profit 

(baht) 

% under 

capacity 

% over 

capacity 

50 orders 143303 12.8 0 154378 9.56 0 188586 0 3.49 

75 orders 153556 12.2 0 163649 8.43 0 195075 0 5.67 

100 orders 164657 11.4 0 178939 7.34 0 213732 0 6.78 
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