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Abstract—This paper presents two different implementations 

of 128-bit AES cryptography for RFID tags: hardware module 

and software program. The hardware AES module has been 

designed with 0.13 um CMOS technology at 1.5 V. The size of the 

module is 7229 equivalent gates, and the maximum throughput is 

130 Mbps. The power consumption at 125 kHz is 6 uA, which 

meets specification for low-power RFID tags at low frequency. 

The software version is implemented on a custom 8-bit 

microcontroller. The program is written in assembly language 

with our proprietary instruction set. It can process AES 

encryption in 6,012 instructions, which takes 20,601 clock cycles, 

using 2 kBytes of instruction memory and 320 Bytes of data 

memory. It is targeted to use in high-frequency RFID 
applications. 
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I.  INTRODUCTION 

The need for strong encryption in RF tags has increased in 
recent years. The most popular encryption algorithm is the 
Advance Encryption Standard (AES), which is certified by the 
U.S. National Institute of Standards and Technology (NIST). 
RFID tags with AES encryption are being adopted as a secured 
encryption standard in the industry. The two frequency ranges 
in which AES encryption is widely used are low frequency 
range (LF, 120-150 kHz) and high frequency range (HF, 13.56 
MHz). These two applications have different constraints in 
terms of encryption time. The LF applications require 
encryption to finish within a few hundred RF cycles, In HF 
applications, AES processing time can be as long as several 
thousand RF cycles. 

This paper describes the implementation of 128-bit AES 
encryption in custom design RFID chips under the processing 
time constraint for the two frequency ranges. Another two 
important constraints of ASIC design are also taken into 
account: small area and low power consumption. For LF 
applications where the processing time is limited, a hardware 
module is proposed. For HF applications, a custom 
microcontroller unit with an encryption program is proposed in 
order to provide programmability. The software version for 
encryption also saves chip area since it does not require extra 
hardware. 

Section II gives a short overview of AES encryption and 
decryption algorithm. In Section III and IV, our methods of 
hardware and software AES implementation are described. We 

also discuss the performance of both methods and compare the 
result with other existing designs. 

II. AES ALGORITHM 

AES is a block cipher that converts plain text input with 
length of 128, 192, or 256 bits into cipher text output with the 
same length. The input text is processed as a two-dimensional 
array of bytes illustrated in Fig 1, which is extracted from [1]. 
The intermediate data are called States.  The States are 
processed by four transformations: SubByte, ShiftRows, 
MixColumn, and AddRoundKey. The AES encryption and 
decryption flow chart, as presented in [2], is shown in Fig 2. 

 

Fig. 1. AES Encryption Data Format 

 

Fig. 2. AES Encryption and Decryption Flow Chart 



A. SuByte Transfomration 

The SubByte process substitutes each byte of the State with 
its corresponding S-box transformation. The SubByte 
transformation is the multiplicative inverse in the Galois Field 
GF(2

8
) using the irreducible polynomial m(x) = x

8
 + x

4
 + x

3
 + 

x + 1 followed by an affine transformation. The InvSubByte 
transformation is the inverse affine transformation followed by 
the multiplicative inverse. 

B. ShiftRows Transformation 

The ShiftRow transformation rotates the last three rows of 
the State to the left. Row 1, 2, and 3 are rotated by 1, 2, and 3 
bytes respectively. The InvShiftRow transformation rotates the 
rows to the right by the same amount of bytes. 

C. MixColumn Transformation 

The MixColumn transformation applies to each column of 
the State. It takes the four bytes of the column as a polynomial 
over GF(2

8
), and multiply the polynomial with a fixed 

polynomial a(x) = {03}x
3
 + {01}x

2
 + {01}x + {02}, using 

modulo x
4
 + 1. In case of InvMixColumn transformation, the 

column is multiplied with the polynomial a
-1

(x) = {0b}x
3 

+ 
{0d}x

2
 + {09}x + {0e}. 

D. AddRoundKey Transformation 

The AddRoundKey transformation adds the State with the 

RoundKey. The addition is accomplished by bitwise XOR 
operation. The Key Expansion process takes the AES key as 
an input and expands it to a number of RoundKeys. Each 
RoundKey consists of four words. Each word is 4-byte long 
and is added to each byte of the State column. 

The psudocode of the Key Expansion operation of AES128 
encryption, as described in [1], is shown in Fig. 3. 

 

Fig. 3. Psudocode for AES128 Key Expansion 

 

Key[i] is one word of the input key, and 0 < i < 4 

W[i] is one word of RoundKey, and 0 < i < 43 

SubWord() applies S-Box transformation to a word. 

 RotWord() rotates left each word by one byte. 

III. AES HARDWARE IMPLEMENTATION 

The advantage of the hardware module over its software 
counterpart is that it can process encryption and decryption 
faster. The disadvantage is that the module occupies extra chip 
area. The data path of this hardware module relies on the 
architecture presented in [2]. This architecture is intuitive and 
modular, which allows easy customization and optimization. 

A. Top Module Block Diagram 

 The top module architecture is shown in Fig 4. The 
AES_Top unit consists of three main units: Data Unit, Key 

Gen and Control. 

B. Data Units 

The structure of the Data Unit is shown in Figure 5. The 
Data Unit consists of sixteen Data Cells, four SBox, module, 
and one MCol module. 

Data Cell 

The Data Cell contains one byte of the. The Data Unit 
contains 16 Data Cells arranged as a 4x4 array. A Data Cell has 
three functions: load horizontal input, load vertical input, and 
add key to the State. 
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Fig. 4. Block Diagram of the AES Hardware Top Module 
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Fig. 5. Block Diagram of the Data Unit 



SBox 

SBox converts the input byte using multiplicative inversion 
and affine transformation. The input bytes are shifted down to 
the four SBoxes four bytes at a time during SubByte process. 
Therefore, the SubByte process takes four clock cycles to 
complete. 

SBox can be implemented by storing pre-calculated data in 
a look-up table. However, the look-up version of the SBox is 
very big; the four SBoxes take about 46% of the AES module 
area. In order to reduce the size of the SBox, we implement it 
according to its mathematical definition: multiplicative 
inversion and affine transformation in GF(2

8
).  

The details of SBox implementation can be found in [4]. 
The overview of the module is shown in Fig 6. In case of 
encryption (INV = 0), the input goes into the multiplicative 
inversion module before going into affine transformation (AT) 
module. In case of decryption (INV = 1), the input goes into 
the inverse affine transformation (AT

-1
) module before taking 

the multiplicative inverse. 

 

Fig. 6. Block Diagram of the SBox Module 

Mix Column Module (MCol) 

The Mix Column module is located on the leftmost side of 
the Data Cell row. During MixColumn transformation, the 
States are shifted to the left, passing through the MCol module 
one column at a time. Therefore, the MixColumn process takes 
four clock cycles to complete. 

The MixColumn transformation involves multiplication in 
GF(2

8
) with the irreducible polynomial m(x) = x

8
 + x

4
 + x

3
 + x 

+ 1. According to the finite field arithmetic property in [1], if S 
is an element in GF(2

8
). 

S • {02} = (S << 2) ⊕ (S(7) & {1b}) 

 = { S(6), S(5), S(4), (S(3)⊕S(7)), 

         (S(2)⊕S(7)) ,S(1), (S(0⊕S(7)) ,S(7) }         (1)   

Equation (1) can be easily implemented with an 8-bit shift 
register and three XOR gates. We can expand this idea for the 
case of multiplication by four and eight.  

S • {04} = (S • {02}) • {02}                 (2) 

S • {08} = (S • {04}) • {02} (3) 

 We can decompose other multiplication in MixColumn 
transformation into several stages of multiply-by-2 and XOR. 
Every multiplication is complete within one clock cycle. 

 

It should be noted that in [2] there are sixteen Mix Column 
modules located inside every Data Cell. In our design we 
separate the MCol from the Data Cells. This substantially 
reduces the size of the whole module with the price of longer 
processing time. 

C. Key Generator 

Before starting AddRoundKey transformation, the 
controller must load the AES key into the generator. Then 
enable it to produce RoundKey. Key generation takes one 
clock cycle for each round. 

In case of decryption, the Controller must load the AES 
key, enable the Key Generator to run forward until the last 
RoundKey is generated, after which it calculates the next 
RoundKey in reverse order. This forward calculation process 
takes 10 additional clock cycles. 

The structures of the Key Generator in case of encryption 

and decryption are shown separately in Fig 7 and 8, although 
they are actually implemented with a single hardware module. 

D. Controller 

The Controller is a 6-state Finite State Machine. The 
operation of each state is explained in Table I. The state 
diagram during encryption and decryption are provided in Fig 

9 and Fig 10. Each normal AES round takes nine clock cycles 
to complete, while the first round and the last round takes one 
and six clock cycles respectively. The total encryption time is 
93 clock cycles, while the decryption time is 103 clock cycles. 

TABLE I.  OPERATING STATES OF THE CONTROLLER 

State Description 
Processing 

Time (clk) 

IDLE Wait for Start signal - 

LOAD 

Load input data into Data Unit, and load 

AES key into Key Generator. During 

decryption, it needs 10 extra clock to 

generate the last RoundKey 

Encrypt: 4 

Decrypt: 14 

ADD_RKEY Perform AddRoundKey operation 1 

SUBBYTE_ 

SHFROW 

Perform SubByte and ShiftRow by 

shifting the State down. 
4 

MIXCOL 
Perform MixColumn operation by shifting 

the State to the left. 
4 

DONE 
Generate done signal to indicate end of 

operation 
- 

S • {03} = (S • {02}) ⊕   S 

S • {09} = (S • {08}) ⊕    S 

S • {0b} = (S • {08}) ⊕  (S • {02}) ⊕  S 

S • {0d} = (S • {08}) ⊕  (S • {04}) ⊕  S 

S • {0e} = (S • {08}) ⊕  (S • {04}) ⊕  (S • {02})                (4) 
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Fig. 7. Block Diagram of the Key Generator during Encryption 
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Fig. 8. Block Diagram of the Key Generator during Decryption 
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Fig. 9. State Diagram of the Controller during Encryption 
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Fig. 10. State Diagram of the Controller during Decryption 



E. AES Hardware Characteristic 

The module AES_top is synthesized with the digital 
synthesis tool with 0.13um CMOS technology. The power 
consumption is measured by exporting the synthesized design 

to a netlist and simulates it using a netlist simulator. The 
supply voltage is 1.5V and the clock frequency is 125 kHz. 
The details are presented in Table II and III. 

F. Performance Comparison 

The characteristic of our AES module is given in Table IV 
in comparison with reference design in [2] and [3]. 

Our design is about 30% smaller than the size of [2] while 
yielding about as fast throughput. The longer processing time 
results from the fact that we only have one Mix Column 
module, in contrast to 16 modules in [2]. Therefore, our design 
requires four clock cycles while the design of [2] requires only 
one clock cycle for MixColumn. Another reason for longer 
processing time is the lack of Key Cache unit presented in [2]. 

Although our processing time is longer, the throughput is 
about the same as [2]. This implies that our maximum clock 
speed is faster. This is because the design of [2] is implemented 
on larger technology node. However, the maximum speed of 
our design can be increased by applying pipeline states in the 
DataUnit to increase throughput. 

Comparing to [3], our design is about 30% bigger. The 
processing time is also 50% slower, resulting in slower 
throughput. This is because the design in [3] uses the optimized 
data path where the States pass the S-Box and MixColumn 
module in five clock cycles, while our design takes nine clock 
cycles. 

TABLE II.  AREA OF THE AES HARDWARE MODULE 

Module Name 
Area 

(um
2
) 

No. of 

Gates 
%  

Data Unit Total (23,784) (4,664) (64.5%) 

   SBox x4 8,448 1,656 22.9% 

   MixColumn 5,226 1,025 14.2% 

   DataCell x16 8,384 1,644 22.7% 

   Other logic gates 1726 338 4.7% 

Key Generator (9,363) (1,836) (25.4%) 

Controller and other 

logic gates 
(3,722) (730) (10.1%) 

Total 36,869 7,229 100.0% 

TABLE III.  POWER CONSUMPTION OF THE AES HARDWARE MODULE 

Avg. Switching Power 

(at 1.5V, 125 kHz) 
6.0 uA 

Avg. Static Power 900 nA 

TABLE IV.  COMPARISON OF DIFFERENT AES MODULES 

Design 
Gate  

Equivalent 

Processing 

Time (clk) 

Through 

put(Mbit/s) 

Tech. 

Node 

Mangard 

[2] 
10,799 64 128 0.60 

Our design 7,229 103 130 0.13 

Satoh 

[3] 
5,398 54 311 0.11 

IV. AES SOFTWARE IMPLEMENTATION 

We now explore the implementation of AES encryption by 
a software program of a custom microcontroller unit. The 
advantage of using software version is that we can save chip 
area since the program resides in the instruction memory and 
no extra hardware is required. The disadvantage is that it takes 
much longer processing time than the hardware version. 

The microcontroller is 8-bit, with 1024 kByte data memory, 
8 kByte instruction memory, and 16 bytes of general-purpose 
registers. The instruction set consists of 49 instructions. To 
support AES, we add an instruction for 8-bit multiplication 
(mul). The microcontroller supports four interrupt requests, 
including a wake-up interrupt. It is designed for RFID 
applications, which require small area and low power. It has 
3.42 CPI (cycle per instruction) data path.  

The AES encryption program is written in assembly 
language, and assembled with our customized assembler. The 
assembled program is simulated by a cycle-accurate simulator 
to measure its characteristic. The result is shown in Table V. 

We compare this implementation with a commercial soft-
core processor, MicroBlaze [5], which is a simple 32-bit 
processor. It executes the AES benchmark in 43,500 clocks [6].  
Our implementation with specialized instruction has huge 
advantage, being twice as fast with 8-bit data path.   

The AES processing time of our microcontroller is in the 
acceptable range for HF applications. Nevertheless, we suggest 
the following optimization to further improve the execution 
speed. 

1) Modify the microcontroller so that it executes every 
instruction in one clock cycle. This would reduce the 
encryption time by three times. 

2) Introduce a new instruction, mix, to execute the 
MixColumn transformation in one instruction. This 
requires an additional hardware module, which is the 
MCol module designed in Section III. This will 
shorten the program by approximately 1,800 
instructions. Assuming the mix instruction takes one 
clock, the speed up of execution time will be 
significant (around 30%). 

TABLE V.  CHARACTERISTIC OF THE AES PROGRAM 

Total Instruction Executed 6012 instructions 

Total Processing Time 20601 clock cycles 

Total RAM Usage 320 bytes 

Total Program Size 1024 instructions (2 kByte) 

 

V. CONCLUSION 

Two methods of AES cryptography implementations have 
been explored: by hardware and software. The hardware AES 
module size is 30% smaller than the design in [2] with 
comparable processing time. However, the design can be 
optimized toward [3].  The processing time of the module is 



fast enough for low-frequency RFID applications. The power 
consumption and area are small enough for ASIC 
implementation. The module can be implemented as a co-
processor unit in a chip, or it can be integrated into a custom 
microcontroller as a peripheral module. 

 The software AES program is implemented based on our 
proprietary instruction set. The resource usage of the program 
can fit in the microcontroller. The processing time also meet 
our specification for high-frequency RFID applications. Two 
methods to speed up the microcontroller processing time are 
also proposed. 
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