
AES Implementation for RFID Tags:

The Hardware and Software Approaches

Thanapol Hongsongkiat

New Product Research Department

Silicon Craft Technology Co., Ltd.
Bangkok, Thailand
thanapol@sic.co.th

Prabhas Chongstitvatana, Ph.D.

Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University
Bangkok, Thailand

prabhas@chula.ac.th

Abstract—This paper presents two different implementations

of 128-bit AES cryptography for RFID tags: hardware module

and software program. The hardware AES module has been

designed with 0.13 um CMOS technology at 1.5 V. The size of the

module is 7229 equivalent gates, and the maximum throughput is

130 Mbps. The power consumption at 125 kHz is 6 uA, which

meets specification for low-power RFID tags at low frequency.

The software version is implemented on a custom 8-bit

microcontroller. The program is written in assembly language

with our proprietary instruction set. It can process AES

encryption in 6,012 instructions, which takes 20,601 clock cycles,

using 2 kBytes of instruction memory and 320 Bytes of data

memory. It is targeted to use in high-frequency RFID
applications.

Keywords—AES; ASIC; RFID; low-power; low-freuency;

I. INTRODUCTION

The need for strong encryption in RF tags has increased in
recent years. The most popular encryption algorithm is the
Advance Encryption Standard (AES), which is certified by the
U.S. National Institute of Standards and Technology (NIST).
RFID tags with AES encryption are being adopted as a secured
encryption standard in the industry. The two frequency ranges
in which AES encryption is widely used are low frequency
range (LF, 120-150 kHz) and high frequency range (HF, 13.56
MHz). These two applications have different constraints in
terms of encryption time. The LF applications require
encryption to finish within a few hundred RF cycles, In HF
applications, AES processing time can be as long as several
thousand RF cycles.

This paper describes the implementation of 128-bit AES
encryption in custom design RFID chips under the processing
time constraint for the two frequency ranges. Another two
important constraints of ASIC design are also taken into
account: small area and low power consumption. For LF
applications where the processing time is limited, a hardware
module is proposed. For HF applications, a custom
microcontroller unit with an encryption program is proposed in
order to provide programmability. The software version for
encryption also saves chip area since it does not require extra
hardware.

Section II gives a short overview of AES encryption and
decryption algorithm. In Section III and IV, our methods of
hardware and software AES implementation are described. We

also discuss the performance of both methods and compare the
result with other existing designs.

II. AES ALGORITHM

AES is a block cipher that converts plain text input with
length of 128, 192, or 256 bits into cipher text output with the
same length. The input text is processed as a two-dimensional
array of bytes illustrated in Fig 1, which is extracted from [1].
The intermediate data are called States. The States are
processed by four transformations: SubByte, ShiftRows,
MixColumn, and AddRoundKey. The AES encryption and
decryption flow chart, as presented in [2], is shown in Fig 2.

Fig. 1. AES Encryption Data Format

Fig. 2. AES Encryption and Decryption Flow Chart

A. SuByte Transfomration

The SubByte process substitutes each byte of the State with
its corresponding S-box transformation. The SubByte
transformation is the multiplicative inverse in the Galois Field
GF(2

8
) using the irreducible polynomial m(x) = x

8
 + x

4
 + x

3
 +

x + 1 followed by an affine transformation. The InvSubByte
transformation is the inverse affine transformation followed by
the multiplicative inverse.

B. ShiftRows Transformation

The ShiftRow transformation rotates the last three rows of
the State to the left. Row 1, 2, and 3 are rotated by 1, 2, and 3
bytes respectively. The InvShiftRow transformation rotates the
rows to the right by the same amount of bytes.

C. MixColumn Transformation

The MixColumn transformation applies to each column of
the State. It takes the four bytes of the column as a polynomial
over GF(2

8
), and multiply the polynomial with a fixed

polynomial a(x) = {03}x
3
 + {01}x

2
 + {01}x + {02}, using

modulo x
4
 + 1. In case of InvMixColumn transformation, the

column is multiplied with the polynomial a
-1

(x) = {0b}x
3

+
{0d}x

2
 + {09}x + {0e}.

D. AddRoundKey Transformation

The AddRoundKey transformation adds the State with the

RoundKey. The addition is accomplished by bitwise XOR
operation. The Key Expansion process takes the AES key as
an input and expands it to a number of RoundKeys. Each
RoundKey consists of four words. Each word is 4-byte long
and is added to each byte of the State column.

The psudocode of the Key Expansion operation of AES128
encryption, as described in [1], is shown in Fig. 3.

Fig. 3. Psudocode for AES128 Key Expansion

Key[i] is one word of the input key, and 0 < i < 4

W[i] is one word of RoundKey, and 0 < i < 43

SubWord() applies S-Box transformation to a word.

 RotWord() rotates left each word by one byte.

III. AES HARDWARE IMPLEMENTATION

The advantage of the hardware module over its software
counterpart is that it can process encryption and decryption
faster. The disadvantage is that the module occupies extra chip
area. The data path of this hardware module relies on the
architecture presented in [2]. This architecture is intuitive and
modular, which allows easy customization and optimization.

A. Top Module Block Diagram

 The top module architecture is shown in Fig 4. The
AES_Top unit consists of three main units: Data Unit, Key

Gen and Control.

B. Data Units

The structure of the Data Unit is shown in Figure 5. The
Data Unit consists of sixteen Data Cells, four SBox, module,
and one MCol module.

Data Cell

The Data Cell contains one byte of the. The Data Unit
contains 16 Data Cells arranged as a 4x4 array. A Data Cell has
three functions: load horizontal input, load vertical input, and
add key to the State.

Data
Unit

Key
Gen

Control

load_din
shf_h
shf_v
add_k
sub_k

msel(1:0)
state(31:0)

lo
ad

_k
ey

en

ke
y(

1
2

7
:0

)

rc
o

n
(3

1
:0

)

keySub(31:0)

key(127:0)

clk
reset

start
din(127:0)
key(127:0)
dout(127:0)
done

AES_Top

dcryp

d
cr

yp

dcryp

Fig. 4. Block Diagram of the AES Hardware Top Module

C00 C01 C02 C03

C10 C11 C12 C13

C20 C21 C22 C23

C30 C31 C32 C33

Sbox0 Sbox1 Sbox2 Sbox3

state(31:24)

state(23:16)

state(15:8)

state(7:0)

keySubIn(31:0)

Data Unit

load_din

msel(1:0)

shf_h

shf_v

add_k

sub_k

key
(127:120)

dcryp

key
(119:112)

key
(111:104)

key
(103:96)

key
(95:88)

key
(87:80)

key
(79:72)

key
(71:64)

key
(63:56)

key
(55:48)

key
(47:40)

key
(39:32)

key
(31:24)

key
(23:16)

key
(15:8)

key
(7:0)

key(127:0)

sout(31:24)

sout(23:16)

sout(15:8)

sout(7:0)

dcryp

dcryp dcryp dcryp dcryp

load_din

load_din

load_din

load_din

clk

keySubOut(31:0)

MCol

Fig. 5. Block Diagram of the Data Unit

SBox

SBox converts the input byte using multiplicative inversion
and affine transformation. The input bytes are shifted down to
the four SBoxes four bytes at a time during SubByte process.
Therefore, the SubByte process takes four clock cycles to
complete.

SBox can be implemented by storing pre-calculated data in
a look-up table. However, the look-up version of the SBox is
very big; the four SBoxes take about 46% of the AES module
area. In order to reduce the size of the SBox, we implement it
according to its mathematical definition: multiplicative
inversion and affine transformation in GF(2

8
).

The details of SBox implementation can be found in [4].
The overview of the module is shown in Fig 6. In case of
encryption (INV = 0), the input goes into the multiplicative
inversion module before going into affine transformation (AT)
module. In case of decryption (INV = 1), the input goes into
the inverse affine transformation (AT

-1
) module before taking

the multiplicative inverse.

Fig. 6. Block Diagram of the SBox Module

Mix Column Module (MCol)

The Mix Column module is located on the leftmost side of
the Data Cell row. During MixColumn transformation, the
States are shifted to the left, passing through the MCol module
one column at a time. Therefore, the MixColumn process takes
four clock cycles to complete.

The MixColumn transformation involves multiplication in
GF(2

8
) with the irreducible polynomial m(x) = x

8
 + x

4
 + x

3
 + x

+ 1. According to the finite field arithmetic property in [1], if S
is an element in GF(2

8
).

S • {02} = (S << 2) ⊕ (S(7) & {1b})

 = { S(6), S(5), S(4), (S(3)⊕S(7)),

 (S(2)⊕S(7)) ,S(1), (S(0⊕S(7)) ,S(7) } (1)

Equation (1) can be easily implemented with an 8-bit shift
register and three XOR gates. We can expand this idea for the
case of multiplication by four and eight.

S • {04} = (S • {02}) • {02} (2)

S • {08} = (S • {04}) • {02} (3)

 We can decompose other multiplication in MixColumn
transformation into several stages of multiply-by-2 and XOR.
Every multiplication is complete within one clock cycle.

It should be noted that in [2] there are sixteen Mix Column
modules located inside every Data Cell. In our design we
separate the MCol from the Data Cells. This substantially
reduces the size of the whole module with the price of longer
processing time.

C. Key Generator

Before starting AddRoundKey transformation, the
controller must load the AES key into the generator. Then
enable it to produce RoundKey. Key generation takes one
clock cycle for each round.

In case of decryption, the Controller must load the AES
key, enable the Key Generator to run forward until the last
RoundKey is generated, after which it calculates the next
RoundKey in reverse order. This forward calculation process
takes 10 additional clock cycles.

The structures of the Key Generator in case of encryption

and decryption are shown separately in Fig 7 and 8, although
they are actually implemented with a single hardware module.

D. Controller

The Controller is a 6-state Finite State Machine. The
operation of each state is explained in Table I. The state
diagram during encryption and decryption are provided in Fig

9 and Fig 10. Each normal AES round takes nine clock cycles
to complete, while the first round and the last round takes one
and six clock cycles respectively. The total encryption time is
93 clock cycles, while the decryption time is 103 clock cycles.

TABLE I. OPERATING STATES OF THE CONTROLLER

State Description
Processing

Time (clk)

IDLE Wait for Start signal -

LOAD

Load input data into Data Unit, and load

AES key into Key Generator. During

decryption, it needs 10 extra clock to

generate the last RoundKey

Encrypt: 4

Decrypt: 14

ADD_RKEY Perform AddRoundKey operation 1

SUBBYTE_

SHFROW

Perform SubByte and ShiftRow by

shifting the State down.
4

MIXCOL
Perform MixColumn operation by shifting

the State to the left.
4

DONE
Generate done signal to indicate end of

operation
-

S • {03} = (S • {02}) ⊕ S

S • {09} = (S • {08}) ⊕ S

S • {0b} = (S • {08}) ⊕ (S • {02}) ⊕ S

S • {0d} = (S • {08}) ⊕ (S • {04}) ⊕ S

S • {0e} = (S • {08}) ⊕ (S • {04}) ⊕ (S • {02}) (4)

W0

W1

W2

W3 Rotate Left

+

KeySubIn(31:0) Rcon(31:0)

+

+

+

KeySubOut(31:0)

keyIn(127:0)

Key Gen
(encrypt)

w0_next

w1_next

w2_next

w3_next

dcrypload

KeyOut(127:96)

KeyOut(95:64)

KeyOut(63:32)

KeyOut(31:0)

load

load

load

load

clk en

Fig. 7. Block Diagram of the Key Generator during Encryption

W0

W1

W2

W3 Rotate Left

+

KeySubIn(31:0) Rcon(31:0)

+

+

+

KeySubOut(31:0)

keyIn(127:0)
(last round key
after encrypt)

Key Gen
(decrypt)

w0_prev

w1_prev

w2_prev

w3_prev w3_prev

KeyOut(127:96)

KeyOut(95:64)

KeyOut(63:32)

KeyOut(31:0)

load

load

load

load

dcryploadclk en

Fig. 8. Block Diagram of the Key Generator during Decryption

start = 1?

cnt = 3?

KeyGenerator:
Load AES Key

DataUnit:
Load input

DataUnit:
add RoundKey

cnt++

round = 10?

round++

DataUnit:
Shift down

cnt = 3?cnt++

round = 10?
KeyGenerator:

Gen next
RoundKey

KeyGenerator:
Gen next
RoundKey

DataUnit:
Shift left

cnt = 3?cnt++

N

Y

Y

N

N

done = 1

start = 1?

Y

Y

N

Y

N

Y

N

YN

IDLE

LOAD

ADD
RKEY

DONE

SUBYTE_SHFROW

MIXCOL

Controller State: Encryption

dcryp = ‘0’

Fig. 9. State Diagram of the Controller during Encryption

start = 1?

cnt = 13?

DataUnit:
add RoundKey

cnt++

round = 10?

DataUnit:
Shift down

cnt = 3?cnt++

round = 1?
KeyGenerator:
Gen RoundKey

for round 1

KeyGenerator:
Gen next
RoundKey

DataUnit:
Shift left

cnt = 3?cnt++

N

Y

N

done = 1

start = 1?
Y

Y

N

Y

N

Y

N

YN

IDLE

LOAD

ADD
RKEY

DONE

SUBYTE_SHFROW

MIXCOL

Controller State: Decryption

KeyGenerator:
Gen next
RoundKey

cnt >= 3?

KeyGenerator:
Switch to

decrypt mode

KeyGenerator:
Load AES Key

DataUnit:
Load input

round++

round = 0?

round++

round++

dcryp = 1

Y

N

Y

N N

Y

Fig. 10. State Diagram of the Controller during Decryption

E. AES Hardware Characteristic

The module AES_top is synthesized with the digital
synthesis tool with 0.13um CMOS technology. The power
consumption is measured by exporting the synthesized design

to a netlist and simulates it using a netlist simulator. The
supply voltage is 1.5V and the clock frequency is 125 kHz.
The details are presented in Table II and III.

F. Performance Comparison

The characteristic of our AES module is given in Table IV
in comparison with reference design in [2] and [3].

Our design is about 30% smaller than the size of [2] while
yielding about as fast throughput. The longer processing time
results from the fact that we only have one Mix Column
module, in contrast to 16 modules in [2]. Therefore, our design
requires four clock cycles while the design of [2] requires only
one clock cycle for MixColumn. Another reason for longer
processing time is the lack of Key Cache unit presented in [2].

Although our processing time is longer, the throughput is
about the same as [2]. This implies that our maximum clock
speed is faster. This is because the design of [2] is implemented
on larger technology node. However, the maximum speed of
our design can be increased by applying pipeline states in the
DataUnit to increase throughput.

Comparing to [3], our design is about 30% bigger. The
processing time is also 50% slower, resulting in slower
throughput. This is because the design in [3] uses the optimized
data path where the States pass the S-Box and MixColumn
module in five clock cycles, while our design takes nine clock
cycles.

TABLE II. AREA OF THE AES HARDWARE MODULE

Module Name
Area

(um
2
)

No. of

Gates
%

Data Unit Total (23,784) (4,664) (64.5%)

 SBox x4 8,448 1,656 22.9%

 MixColumn 5,226 1,025 14.2%

 DataCell x16 8,384 1,644 22.7%

 Other logic gates 1726 338 4.7%

Key Generator (9,363) (1,836) (25.4%)

Controller and other

logic gates
(3,722) (730) (10.1%)

Total 36,869 7,229 100.0%

TABLE III. POWER CONSUMPTION OF THE AES HARDWARE MODULE

Avg. Switching Power

(at 1.5V, 125 kHz)
6.0 uA

Avg. Static Power 900 nA

TABLE IV. COMPARISON OF DIFFERENT AES MODULES

Design
Gate

Equivalent

Processing

Time (clk)

Through

put(Mbit/s)

Tech.

Node

Mangard

[2]
10,799 64 128 0.60

Our design 7,229 103 130 0.13

Satoh

[3]
5,398 54 311 0.11

IV. AES SOFTWARE IMPLEMENTATION

We now explore the implementation of AES encryption by
a software program of a custom microcontroller unit. The
advantage of using software version is that we can save chip
area since the program resides in the instruction memory and
no extra hardware is required. The disadvantage is that it takes
much longer processing time than the hardware version.

The microcontroller is 8-bit, with 1024 kByte data memory,
8 kByte instruction memory, and 16 bytes of general-purpose
registers. The instruction set consists of 49 instructions. To
support AES, we add an instruction for 8-bit multiplication
(mul). The microcontroller supports four interrupt requests,
including a wake-up interrupt. It is designed for RFID
applications, which require small area and low power. It has
3.42 CPI (cycle per instruction) data path.

The AES encryption program is written in assembly
language, and assembled with our customized assembler. The
assembled program is simulated by a cycle-accurate simulator
to measure its characteristic. The result is shown in Table V.

We compare this implementation with a commercial soft-
core processor, MicroBlaze [5], which is a simple 32-bit
processor. It executes the AES benchmark in 43,500 clocks [6].
Our implementation with specialized instruction has huge
advantage, being twice as fast with 8-bit data path.

The AES processing time of our microcontroller is in the
acceptable range for HF applications. Nevertheless, we suggest
the following optimization to further improve the execution
speed.

1) Modify the microcontroller so that it executes every
instruction in one clock cycle. This would reduce the
encryption time by three times.

2) Introduce a new instruction, mix, to execute the
MixColumn transformation in one instruction. This
requires an additional hardware module, which is the
MCol module designed in Section III. This will
shorten the program by approximately 1,800
instructions. Assuming the mix instruction takes one
clock, the speed up of execution time will be
significant (around 30%).

TABLE V. CHARACTERISTIC OF THE AES PROGRAM

Total Instruction Executed 6012 instructions

Total Processing Time 20601 clock cycles

Total RAM Usage 320 bytes

Total Program Size 1024 instructions (2 kByte)

V. CONCLUSION

Two methods of AES cryptography implementations have
been explored: by hardware and software. The hardware AES
module size is 30% smaller than the design in [2] with
comparable processing time. However, the design can be
optimized toward [3]. The processing time of the module is

fast enough for low-frequency RFID applications. The power
consumption and area are small enough for ASIC
implementation. The module can be implemented as a co-
processor unit in a chip, or it can be integrated into a custom
microcontroller as a peripheral module.

 The software AES program is implemented based on our
proprietary instruction set. The resource usage of the program
can fit in the microcontroller. The processing time also meet
our specification for high-frequency RFID applications. Two
methods to speed up the microcontroller processing time are
also proposed.

ACKNOWLEDGMENT

We would like to express our appreciation to Silicon Craft
Technology for continuing support and providing valuable
information to the project.

REFERENCES

[1] National Institute of Standards and Technology (NIST) , ―The Advance

Encryption Standard (AES)‖, Federal Information Processing Standard

Publication 197, November 26, 2001

[2] S. Mangard, M. Aigner, and S. Dominikus, ―A highly regular and

scalable AES hardware architecture‖ IEEE Transactions on Computers,

52(4):483–491, April 2003.

[3] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, ―A compact Rijndael

hardware architecture with S-Box optimization‖ Proc. Advances in

Cryptology—ASIACRYPT 2001, pp. 239-254, 2001.

[4] Edwin NC Mui, ―Practical implementation of Rijndael S-Box using

combinational logic‖, Texco Enterprise Ptd. Ltd.

[5] Xilinx, MicroBlaze Processor Reference Guide, 2008.

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_gui

de.pdf

[6] Satayavibul, C. and Chongstitvatana, P., "An embedded processor with

instruction packing", Electrical Engineering, Electronics, Computer,

Telecommunications and Information Technology (ECTI) International

Conference, Chiang Rai, Thailand, 9-12 May 2007, pp.1135-1138.

