
Program Development Tools: Debugging
by Reverse Computing

Kamonluk Suksen
Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand

Kamonluk.Su@student.chula.ac.th

Prabhas Chongstitvatana
Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand

prabhas.c@chula.ac.th

Abstract— More and more program development tools have
turned to Web-based. It has an advantage on being a multi-
platform tool. This work proposes a debugging tool based on
web interface. The main idea of the tool is that the execution of
the program can be regarded as a flow. This flow can be
captured and played back later. Therefore, any state of the
executed program can be analyzed and errors can be pinpointed.
We propose a time-reversal computing as a way to capture the
flow of execution so that the time step can be reversed without
starting from time-zero.

Keywords— debugging, web-based tools, reverse computing

I. INTRODUCTION

Traditionally, debugging is done via “tracing” by single
stepping through the program’s source code. The values of
variables can be observed as the program is executing step-by-
step. So, the behavior of the program can be checked to
understand what went wrong. If we want to know what the
states of computation are at some point in time, we have to
execute the program from the beginning to that point. During
debugging, this inspection of states can be laborious. To save
time in repeating the whole computation each time we want to
observe some particular state at some particular time, we can
store all the states of execution and query them later, but the
amount of storage in a practical debugging session may be
prohibitively large.

Let us assume that we have a capability to perform
“backward” execution of an operation, then given a current
state it is easy to step-back in time by performing a “reverse”
operation of the previous operation. In this case, it is possible
to “go-back” to any previous time step without starting from
the beginning and without storing a large amount of state of
computation.

Let us imagine that during debugging of a program, P, we
do have a “reverse” version of this program, called P’. By
executing P’ at the current state S(t), we can “reverse” the state
to the previous state S(t-1). This is the use of reversible
computing to go back in time.

This work proposes a design of P’ in the form of a virtual
machine. This virtual machine can be used in complement

with tracing operation during debugging a program P and
enables a debugger to go-back in time. The design of P’ is
dependent on the instruction set of P. Some state must be
stored so that reverse execution of an instruction is
possible. We show the detailed design of such machine and
analyze the amount of storage necessary to run P backward. A
simple example is shown to illustrate the practicality of such
approach.

II. RELATED WORKS

Reversible computation has been a topic of great interest
for recent years, and therefore a large amount of work has been
done in widely different areas [1, 7]. However, we focused on
program inversion, as programs based on a reversible
computation paradigm and reversible programming language.
There exist research described the Reversible Virtual Machine
(RVM) that can serve as a target implementation platform for a
reversible probabilistic language. The technique for making a
reversible language is adding some extra state in the form of a
boolean variable and a history stack [2]. An important
mechanism of reversible languages is switch input and output
store for inverse constructs [3].

An Omniscient debugger [5] works by recording all state
changes in the run of a program. The programmer can look
inside of the history of the program and go “backwards in
time” to see where it was set, and what its value was. There
exist bidirectional debugger [6] in which all traditional forward
movement commands can be performed with equal ease in the
reverse direction. It works by re-execute the program to
identify and stop at the desired earlier point. A development of
web based programming assistance tool for novices [4] is a tool
for developing programs on web browser. It is aimed for
novice programmers and it has a helpful display for errors.
However, the program must starts from time-zero for reverse
debugging.

III. BACKGROUND & OVERVIEW

 A traditional debugger can move only in the direction of
forward execution. The user specifies where the execution of
the program should stop, and the debugger executes forward
until it reaches that point. Forward movement is natural and

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

54

well understood, however it is often exactly the opposite of
what would be most convenient for a user trying to observe the
cause of an error.

 If we want to know what the states of computation are at
some point in time, we have to execute the program from the
beginning to that point. We call this method “no-save” because
we can know what the states of computation by re-execution to
that point without storing information in each state. However,
the re-execution wastes the time because it is running of former
states that has already execute.

 To save time in repeating the whole computation each time
we want to track down some particular state at some particular
time, we can store all the states of execution and query them
later, but the amount of storage in practical debugging session
may be prohibitively large. We call this method “save
everything”.

 To reduce storage and save time in repeating the whole
computation, in this paper we propose a debugging tool. The
tool can capture the execution of the program and play back
later by a time-reversal computing so that the time step can be
reversed without starting from time-zero. Moreover, some
particular state is not necessary to storage any information like
the save everything method. We have name our method
“reverse computing”. The debugging by reverse computing
offers a trade-off between storage efficiency and time
efficiency. We describe the reverse computing in Section 4.

IV. REVERSE COMPUTING

 The reverse computing was implemented in the virtual
machine that operate on web interface. This virtual machine
can be used in complement with tracing operation during
debugging a program and enables a debugger to go-back in
time. The design of virtual machine is dependent on the
instruction of program. Some state must be stored into stack so
that reverse execution of an instruction is possible.

 Each state, the information that must be stored is the
program counter (PC), and the instruction. The information in
an instruction are: operation, address1, address2, address3.
Moreover the value of registers and memory in some particular
state that change after the execution must also be stored.

 The operation in some state can change value in the register
for example the instructions: ld, ldd, jal, ori, or, lt, pop, add,
addi, sub, subi, mul, and div. The operation in some state can
change value in the memory such as the instructions: st, std and
stx. In addition, some arithmetic operation can write reverse
arithmetic operation. Therefore, the state is that arithmetic
operation does not need to store the value of register that
change after execution.

A. Reverse Operation

Let us imagine that during debugging of a program P, we
do have a “reverse” version of this program, called P’. By
executing P’ at the current state S(t), we can “reverse” the state
to the previous state S(t-1) by executing reverse operation of
the operation in the current state. The reverse operation will set
the value of PC, operation, address1, address2, address3,
register and memory to be the value of the previous state. Then

it will display the output of the previous state. The amount of
time to reverse computing is equal to the amount of time to
execute the operation in the current state. The number of clock
used in each operation are as follows.

• Operation ldd, st, std, trap, push, pop use 6 clocks

• Operation jal, addi, subi, lt, or, ori, mul, muli, div, divi
use 5 clocks

• Operation jt, jf, ret use 4 clocks

• Operation ld, add, sub use 1 clock

 We give a situation that a user chose to observe the output
clock at 2030 in the bubble sort program and wanted to step
back by previous clock, as shown in Fig.1.

Fig. 1. The backward execution from clock at 2030 to the previous clock in
bubble sort program

B. Reverse Arithmetic Operation

Some arithmetic operation can write the inverse of the
operation such as add, addi, sub, subi, mul and muli. We show
the reverse arithmetic operation as follows.

• add 1 2 3 R[1] = R[2] + R[3]

 Reverse add 1 2 3 R[1] = R[2] – R[3]

• addi 1 2 3 R[1] = R[2] + 3

 Reverse addi 1 2 3 R[1] = R[2] – 3

• sub 1 2 3 R[1] = R[2] – R[3]

 Reverse sub 1 2 3 R[1] = R[2] + R[3]

• subi 1 2 3 R[1] = R[2] – 3

 Reverse subi 1 2 3 R[1] = R[2] + 3

• mul 1 2 3 R[1] = R[2] * R[3]

 Reverse mul 1 2 3 R[1] = R[2] / R[3]

• muli 1 2 3 R[1] = R[2] * 3

 Reverse muli 1 2 3 R[1] = R[2] / 3

 The reverse arithmetic operation can decrease the amount
of information that needs to be stored. Because it can return the
value in the register of the previous state by execute reverse of
arithmetic operation in the current state without storing the
previous value of the register in the previous state.

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

55

V. DEBUGGING BY REVERSE COMPUTING

 A debugging session begins with running the program to a
breakpoint. If the programmer wants to observe the state of
previous clock, he/she can initiate the “reverse” execution. The
reverse virtual machine will execute from the current
instruction, results in reverting the state to the previous state. It
changes the value of PC, instruction register, registers and
memory to be the values of the previous state.

 Diagram represented overall process of debugging by
reverse computing based on web interface, as shown in Fig. 1.

Fig. 2. Diagram represented process of debugging by reverse computing
using web interface

 We give an example of the operation of the debugging by
reverse computing includes the following figures.

Fig. 3. The output from running the matrix multiplication program

Fig. 4. The output from running the program to a breakpoint, the output
clock at 92

Fig. 5. The output from reverse execution that execute from the current
instruction of clock at 92

Fig. 6. The output from forward execution that continuously execute from
Fig.5

VI. EXPERIMENTAL RESULT

 To illustrate the effectiveness of our scheme, we compare
the proposed method with two naïve implementations. First
implementation is saving all states for all instructions executed.
Second implementation is running from time-zero to the n-1 th
instruction. In the first naïve scheme, a large amount of states
will be stored. Any state from the beginning to the breakpoint
can be accessed and displayed. In the second scheme, no state
is stored but it requires to run the program from time-zero to n-
1 th instruction.

 Two simple programs are used as benchmarks: bubble sort
and matrix multiplication. All three modes were tested in the
situation that a user chose to observe the output clock at 2030
and wanted to step back to the previous clock. The results from
the runs are summarized in Table I and Table II.

TABLE I. MEASUREMENT OF TWO RUNS: SAVE EVERYTHING AND
REVERSE COMPUTING (UNIT: WORD, TIME: CLOCK)

Save Everything Reverse Computing
Program Amount of

data
Time to
rerun

Amount of
data

Time to
rerun

Bubble sort 63,756 0 51,643 6

Matrix
multiplication

13,090 0 10,297 4

 In Table I, the bubble sort program executed totally 9,108
states and the matrix multiplication 1,870 states. For the save

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

56

everything method, each state stores: PC, operation, address1,
address2, address3, register and memory. Thus, the amount of
information to be stored of every states in the bubble sort
program and the matrix multiplication program are in total of
63,756 and 13,090 words respectively. It requires a large
amount of storage to store the information in every states.
However, storing all the states of execution enables users to
query any state later without spending time to re-execution. For
the reverse computing method, it is not necessary to store all of
information in every states because each state stores only
information in some particular state at some particular time.
Moreover, the reverse arithmetic operation in the reverse
computing method can reduce the amount of information that
must be stored. Therefore, the information that needs to be
stored in the reverse computing method is less than those of the
save everything method.

TABLE II. MEASUREMENT OF TWO RUNS: NO-SAVE AND REVERSE
COMPUTING (UNIT: WORD, TIME: CLOCK)

No-Save Reverse Computing
Program Amount of

data
Time to
rerun

Amount of
data

Time to
rerun

Bubble sort 0 2,024 51,643 6

Matrix
multiplication

0 2,026 10,297 4

 In Table II, the no-save method will not store the
information of any state but it has to execute the program from
the beginning to the state that users want to observe the output.
Thus, the amount of information that needs to be stored of both
programs is zero. However, it requires time to re-execute the
program. The bubble sort program consumes time to re-execute
as much as 2,024 clocks and the matrix multiplication program
consumes time to re-execute 2,026 clocks. The time to re-
execute is dependent on the number of clock that users want to
observe. When executing to a very distant clock, seeing the
output of the previous clock will definitely take long time to re-
execute. Moreover, re-execution wastes the time because it is a
executing of a previous state that has already been executed.
The reverse computing method will run the reverse operation
of the operation in the current state to go-back to any previous
time step without starting from the beginning. Therefore, the
amount of time to re-execute is equal to the amount of time to
execute the operation in the current state, as shown in Fig.1 and
Fig.7.

Fig. 7. The backward execution from clock at 2030 to the previous clock in
matrix multiplication program

 From both programs, the proposed method can reduce the
amount of information that will be stored by 20.17% compared
to the save-everything method. It also reduces the time by
99.75% compared to the run-from-beginning method.

VII. CONCLUSION

We have developed a reverse operation of data and arithmetic
operation and demonstrated through a working implementation
that it is possible to build a debugging tool by reverse
computing. The method of reverse computing allows a
debugger to locate and move back to any states without starting
from the beginning and without storing a large amount of state
data.

 The efficiency of our scheme is illustrated by comparing it
with two naïve implementations. First implementation is the
method that save all states of all instructions executed. Second
implementation is the method that starts its execution from
time-zero to the n-1 th instruction. In the first scheme, a large
amount of states will be stored. Any state from the beginning to
the breakpoint can be accessed and displayed. In the second
scheme, no states is stored but it requires to run the program
from time-zero to n-1 th instruction. Two simple programs are
used as benchmarks: bubble sort and matrix multiplication. All
of these three modes were tested in the situation that users
chose to track down the output and then step back to the
previous clock. The proposed method can reduce the amount of
information that will be stored by 20.17% compared to the
save-everything method. It also reduces the time by 99.75%
compared to the run-from-beginning method.

 The proposed debugging tool can be used as a traditional
forward movement debugging. It also can be performed with
equal ease in the reverse direction. Moreover, the tool is based
on web interface so it would be most convenient way to
perform debugging on any platform that supports web
interface.

REFERENCES

[1] Axelsen H.B., Gluck R. “What do reversible programs compute?”

(2011) Lecture Notes in Computer Science, 6604 LNCS, pp. 42-56.

[2] Stoddart B., Lynas R., Zeyda F., “A Virtual Machine for Supporting
Reversible Probabilistic Guarded Command Languages,” (2009)
Electronic Notes in Theoretical Computer Science, 253 (6), pp. 33-56.

[3] Yokoyama T., “Reversible Computation and Reversible Programming
Languages,” (2009) Electronic Notes in Theoretical Computer Science,
253 (6), pp. 71-81.

[4] A. More, and J. R. Kumar, V.G., “Web Based Programming Assistance
Tool for Novices,” (2011) IEEE International Conference on
Technology for Education, Chennai, Tamil Nadu.

[5] Lewis B., Ducasse M. Using events to debug Java programs backwards
in time (2003) Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA, pp. 96-
97.

[6] Boothe B. Efficient algorithms for bidirectional debugging (2000)
SIGPLAN Notices (ACM Special Interest Group on Programming
Languages), 35 (5), pp. 299-310.

[7] Engblom J. A review of reverse debugging (2012) Proceedings of the
Conference on System, Software, SoC and Silicon Debug, art. no.
6338149, .

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

57

