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The Use of Explicit Building Blocks in Evolutionary Computation 

This paper proposes a new algorithm to identify and compose building blocks. 

Building blocks are interpreted as common subsequences between good 

individuals. The proposed algorithm can extract building blocks from a 

population explicitly. Explicit building blocks are identified from shared alleles 

among multiple chromosomes. These building blocks are stored in an archive.  

They are recombined to generate offspring. The additively decomposable 

problems and hierarchical decomposable problems are used to validate the 

algorithm. The results are compared with the Bayesian Optimization Algorithm, 

the Hierarchical Bayesian Optimization Algorithm, and the Chi-square Matrix. 

This proposed algorithm is simple, effective, and fast. The experimental results 

confirm that building block identification is an important process that guides the 

recombination procedure to improve the solutions. In addition, the method 

efficiently solves hard problems. 

Keywords: Genetic Algorithm; Estimation of Distribution Algorithm; Building 

Block; Linkage; Multi-parent Recombination 

Introduction 

Evolutionary computation (EC) is a class of algorithms that are suitable for problems 

with a very large search space (Yu and Gen 2010). The classic algorithm in EC is the 

genetic algorithm (GA) (Goldberg 1989), which was inspired by the process of genetic 

breeding in nature. Genetic algorithms have four main processes. First, the solution is 

encoded into a specific pattern, such as a binary string, called a chromosome or an 

individual and a number of encoded solutions, called a population, are generated. 

Second, good chromosomes are selected from the population. Third, selected 

chromosomes are mated using a crossover operator. Fourth, mated chromosomes are 

mutated. The fourth process is an optional step. New offspring are produced after these 

processes are completed. 

As in nature, the evolution process will improve solutions from generation to 

generation. The EC algorithms are based on the premise that better solutions can evolve 

through selection and genetic operations (Goldberg and Sastry 2010).  

In GAs, the solutions are improved based on the assumption that substructures 

of the good solutions exist in the good individuals. If the substructures can be identified 

and combined correctly, the new solutions will be better (Goldberg and Sastry 2010). 

The schema theorem (Schaefer 2007) tells us that the properties of good substructures 

are “short, low-order, highly-fit.” These substructures are called building blocks (BBs). 



The building block hypothesis (BBH) states that the short, low-order, highly-fit 

schemata recombine to form higher order schemas of conceivably higher fitness. This 

hypothesis is used to explain the mechanism of GAs. To perform the recombination, a 

crossover operator is used. The crossover operation was claimed to construct rather than 

disrupt BBs (Schaefer 2007). Generally, one-point crossover is sufficient to solve 

problems. However, several crossover methods have been introduced to improve the 

effectiveness of the recombination, such as the two-point, multiple-point, and uniform 

crossover methods (Sivanandam and Deepa 2008). Different methods work well for 

different types of problems. The mutation operation was reported to provide a new 

source of genetic material (Schaefer 2007). However, setting the appropriate mutation 

rate is difficult. We only know that it should be low. Conversely, the crossover rate 

should be high (Lobo, Lima and Michalewicz 2007; Eiben and Smith 2011). The 

canonical Genetic Algorithm is called the simple GA. It uses fitness-proportion 

selection, single-point crossover and one-bit mutation. The simple GA algorithm is easy 

to use, but it cannot solve hard problems effectively (Sivanandam and Deepa 2008). 

However, several GAs have been successfully applied to a wide range of real world 

problems, such as Wangka (2009), Cheung, Cheung, Tobar, Caram and Garcia (2011), 

Alabsi and Naoum (2012), and Ozcan and Esnaf (2013).  

Multiple parent recombination operators have been studied (Eiben, Rauee and 

Ruttkay 1994; Eiben 2000; Ting and Chen 2007).  Rather than limiting the gene from 

two parents, the gene pool from the population was used. Some forms of explicit blocks 

of genes that come from multiple parents were introduced in many pioneering works 

(Syswerda 1993; Smith and Fogarty 1995; Levenick 1995).  These “blocks” were used 

by recombination operators to compete for a position over certain loci.  In Syswerda 

(1993), an explicit model was created by counting the number of alleles in each bit 

position contributed by the selected population. This information was used to perform 

recombination of genes. Smith and Fogarty (1995) used the linkage between blocks of 

genes of varying size to generate offspring. 

A parallel concept to Building Blocks is linkage learning. Linkage is a relation 

between decision variables. While Building Blocks are defined as a group of genes, 

linkage emphasizes more on the relationship between genes. One important factor in the 

success of Evolutionary algorithms is a good coding scheme that puts genes in the same 

building blocks together thus providing tight linkage. Many linkage learning methods 

have been proposed to discover good building blocks, for example, linkage learning 

genetic algorithm (LLGA) and its variance (Chen and Goldberg 2002; Chen 2006; Chen 

and Lim 2008). A good survey of the linkage learning can be found in (Chen, Yu, 

Sastry and Goldberg 2007). 

If the BBs are mixed properly, the quality of the result will be improved 

(Goldberg and Sastry 2010). Therefore, the BBs must be identified. Building Block 

Identification (Aporntewan and Chongstitvatana 2005) is a method that explicitly 

identify building blocks using correlation between genes. This knowledge is then used 

to partition genes into groups. Once the building blocks are identified, the appropriate 

crossover is used to recombine BBs. Although there are many ways to identify the 



building blocks, a majority of the methods are Estimation of Distribution Algorithms 

(EDAs) (Larrañaga and Lozano 2001; Pelikan, Goldberg, and Lobo 2002; Pelikan, 

Sastry, and Cantú-Paz 2006). The algorithms that employ some data structure (so called 

“model”) to organize the decision variables are also considered to use linkage. They 

include the probabilistic model-building genetic algorithms (PMBGAs) or EDAs 

(Coffin and Smith 2008) where the probabilistic models are used to represent 

relationship of decision variables. In the EDAs, knowledge is shared using a distribution 

model for the population, and new offspring are sampled from the model. However, 

most EDAs require some knowledge to identify the relationships between individuals in 

a population and to build a model. Because BBs are explicitly extracted in terms of 

probabilistic models, EDAs can solve hard problems effectively (Larrañaga, and 

Lozano 2001; Pelikan, Sastry, and Cantú-Paz 2006). The knowledge sharing in both the 

model building and model sampling processes is the main advantage of the EDA 

method. 

The messy GA (mGA) is another approach that uses explicit BBs in the early 

stage (Goldberg, Korb and Deb 1989; Goldberg, Deb, Kargupta and Harik 1993). The 

messy GA worked by building up increasingly longer and better strings from shorter 

building blocks. It progressed in two phases: primordial and juxtapositional. The first 

phase built up the population of small and highly fit candidate. The second phase put 

them together to form solutions.  The juxtaposition is performed by “cut” and “splice” 

operators that work on messy encoding similar to the crossover operators work on a 

fixed length string. A newer generation of mGA is the gene expression messy Genetic 

Algorithm (gemGA) (Kargupta 1996) that simplified the encoding of strings and 

incorporate linkage learning phase which resulted in a large reduction of running time. 

A recent study proposed a simplified BB, called a “Fragment” (Sangkavichitra and 

Chongstitvatana 2010). The substructures of BBs are defined as the substructures that 

two highly fit individuals have in common. These substructures are the Fragments. 

According to the BBH, the Fragments are the BBs because they can be recombined into 

higher order BBs (Goldberg and Sastry 2010). The simple GA with Fragment Crossover 

(sGA-FC) method is introduced. It is based on the simple GA and a special crossover 

(Sangkavichitra and Chongstitvatana 2010). The Fragment Crossover (FC) tries to 

maximize the schema exchange using multiple-point crossover scheme.  

In this paper, we propose a new simple method that was inspired by multi-parent 

recombination, which can share alleles among multiple chromosomes, and EDAs, 

which can identify and compose the BBs explicitly. The proposed method is named the 

“Building Blocks Identification and Composition” (BBIC) algorithm. Two well-known 

BB validation problems were used to demonstrate the behavior of the proposed 

algorithm. The capabilities of the BBIC algorithm were benchmarked using a set of 

hard problems (Collard, Gaspar, Clergue and Escazut 1998; Finger, Stutzle and 

Lourenco 2002). The results were compared with the sGA-FC, the Chi-square Matrix 

(CSM) (Aporntewan and Chongstitvatana 2004), the Bayesian Optimization Algorithm 

(BOA) (Pelikan 2005), and the Hierarchical Bayesian Optimization Algorithm (hBOA)  



(Pelikan 2005). The proposed method outperforms these algorithms in terms of 

the number of function evaluations and the execution time. 

The paper is organized as follows. The Building Block definition is presented in 

Section 2. Section 3 describes the BBIC algorithm. The experiment and results are 

explained in Section 4. The benchmark problems and results are presented in Section 5. 

Section 6 discusses a plausible mechanism that explains the behavior of the algorithm. 

Finally, concluding remarks about the proposed method are given in Section 7. 

Building Block 

Generally, GAs are simple to use but the underlying mechanism is difficult to 

understand. The schema theorem was proposed to explain the effect of each operator 

(selection, crossover, and mutation) on the evolution. The effect of recombination 

process on BBs is not easily understood because it has an indirect impact on BBs. This 

paper introduces a simpler form of the Building Block. The proposed Building Block is 

defined as a contiguous substructure of a chromosome, and is a part of a subschema. 

The defined Building Block can be interpreted as a basic form of the explicit 

subschema. Throughout this article, we will use this definition of Building Block. The 

BBs in a chromosome can take many possible patterns, as shown in Figure 1. An 

example of a BB is shown in Figure 2. The minimum size of a BB is one allele and, the 

maximum size is equal to the length of the chromosome. 

[Figure 1 here] 

[Figure 2 here] 

BBIC: Building Blocks Identification and Composition algorithm 

In this section, we describe the proposed algorithm. The BBIC algorithm consists of two 

main parts: Building Block identification (BBI) and Building Block composition 

(BBC). The BBI process extracts the substructures that are common between good 

individuals (selected chromosomes), and the BBC process assembles them to create 

new offspring. The main objective of the BBIC algorithm is to capture and combine the 

sharing knowledge between good individuals. The main advantages of the algorithm are 

its simplicity and its performance. 

Building Block Identification 

Typically, GAs do not explicitly recognize BBs. The main operator that acts on BBs is 

the crossover, which processes BBs in an implicit manner (Schaefer 2007). There are 

many crossover methods, each suitable for a different type of problem. Most of the 

methods recombine the schemata without knowledge about the BBs. However, they 

work well because the crossed chromosomes are good solutions that have passed a 



selection process and are expected to contain the ideal BBs (Goldberg and Sastry 2010). 

The crossover operation mixes the chromosomes. Normally, these methods differ in the 

number of cross points and the number of parents. In the exchange, the crossover 

operator only manipulates the substructures or alleles that differ between chromosomes. 

The similar substructures remain in the same place, only the distinct parts are moved or 

separated. This exchange mechanism causes schema disruption. The different patterns 

of disruption in each crossover method bias the results in different ways (Smit and 

Eiben 2010). Substructures that are common between chromosomes are unchanged 

during crossover. The common substructures are candidate BBs. We consider the 

similarity of bits that are in the same position of two chromosomes. This information 

can reveal the boundary of the potential BBs. The distinct parts should not be disturbed 

because they might be part of the BBs. We define the BB as the substructures that are 

common and uncommon between any two chromosomes. Both types of BB are retained 

to maintain the diversity in each generation. Evolution mechanisms (selection and 

recombination) process these BBs to improve the quantity and quality of the solutions. 

 [Figure 3 here] 

 

The BBI process is illustrated by an example in Figure 3. Note that the string is 

indexed from left to right starting at position 1. Given two 10-bit chromosome 

sequences, C1 = (1,0,1,1,0,1,0,1,0,1) and C2 = (1,1,1,1,0,0,1,0,0,1), the BBs of C1 and 

C2 are B1= (1), B2,1= (0), B2,2= (1), B3= (1,1,0),  B4,1= (1,0,1),  B4,2=  (0,1,0), and  

B5=  (0,1) consecutively. 

A common schema is defined as any identical contiguous parts between two 

chromosomes, and the uncommon schema is defined as the difference. The BB can be 

interpreted as contiguous subsequences that are common and uncommon between two 

chromosomes. The length of each BB must be greater than or equal to one bit. The 

definitions of the order and length of the BB are similar to those used in GAs. The order 

of a schema is the number of fixed bit positions. The BB comprises all of the fixed bit 

positions; therefore, the size of a BB is the order, e.g., in Figure 3, B3 = (1,1,0) and 

order(B3) = size(B3) = 3. The length of a schema is the distance between the first and 

last fixed bit positions, e.g., in Figure 3, B3 begins at position 3 and ends at position 5 

and length(B3) = 5-3 = 2. For BBs, the short and low-order schemata have a high 

potential to survive, and they will be recombined to create better solutions. The BBs can 

be considered as independent contiguous subschema that are tightly linked. 

Building Block Composition 

The knowledge sharing in the recombination process and the creation of new offspring 

process provides the main advantage of the multi-parent crossover GAs (Eiben 2002) 

and EDAs. These methods gain exploration power to find possible patterns of good 

solutions and enhance the quality of the solutions (Toussaint 2003). The BBIC 



algorithm maintains the diversity of the BBs obtained in the identification process by 

keeping them in an archive. The building block composition demonstrates that the BBs 

are mixed in an explicit manner. There are many ways to compose BBs, but a simple 

method is sufficient. The BBs are selected one by one from the archive to create a new 

offspring. They are combined sequentially starting from the first position, as shown in 

Figure 7. In the archive, many BBs begin at the same position. If there is no guidance as 

to which BB is better, a random selection will avoid biases. When the first BB is 

selected for the first position, the next BB is concatenated to it, and the process is 

repeated until a new chromosome is formed. If there is no BB that starts at the current 

position, a random binary value (0 or 1) is used at that position. This situation might 

occur if the diversity of the population is too low because the population size is too 

small or the population is nearly converged. 

An overview of the BBIC algorithm (Figure 4) is as follows. First, the good 

solutions are selected from the population. Based on the schema theorem and the BBH, 

the chance of survival for a schema increases in a chromosome that has fitness above 

average. Thus, the above average chromosome will be selected using the n-Best 

selection method (select n best individuals). Second (Figure 5), BBs are identified using 

the common schema partitioning criterion mentioned previously. In this step, every 

individual will be collated to explore every possible building block. Third, all BBs are 

labelled using their beginning position in the original individual. An example is shown 

in Figure 7. Building Block B2 begins at position 4 in the chromosome and is stored in 

an archive. Fourth (Figure 6), the BBs in the archive are randomly selected one by one 

to compose the new chromosome from the first position to the last position. This 

process is repeated until the new population is fulfilled. 

 [Figure 4 here] 

[Figure 5 here] 

[Figure 6 here] 

 

The time complexity of the Building Block identification and the Building Block 

composition processes are O((n)
2
·l) and O(n), respectively, where l is the chromosome 

length, and n is the number of selected chromosomes. There are two basic parameters, 

the population size and the number of selected chromosomes in the n-Best selection 

method. Compared to other GAs, or EDAs, it is easy to tune the algorithm. The 

mutation process is optional.  

Figure 7 shows an example of the Building Block identification and the Building 

Block composition process. Two chromosome, C1 = (1010101010) and C2 = 

(1011011001), are compared using the common schema partitioning criterion. Six BBs 

are found. There are two common parts and two different parts between C1 and C2. The 

Building Blocks B1 = (101) and B4 = (10) are the common parts, and B2 = (010), B3 = 



(101), B5 = (10) and B6 = (01) are the different parts. The starting positions of Building 

Blocks B1 - B6 are 1, 4, 4, 7, 9 and 9. The BBs are labelled and archived into a 

composition table according to the beginning positions. The results are obtained once all 

pairs of the selected individuals have been collated. They are shown in the next 

composition table in Figure 7. The next process is Building Block composition, which 

creates new offspring for the next generation. In the example, two new chromosomes 

were produced, N1 and N2. Chromosome N1 was started by randomly selecting a 

Building Block for the position one. Building Block B31 was selected. The length of 

B31 is two, thus the next Building Block must begin at the position three. Building 

Block B12, B32 and B5 were randomly selected to complete N1. Chromosome N2 was 

created in the same manner as N1, but the last position has no Building Block in the 

archive. Therefore, a 0 or 1 bit is randomly generated. 

 [Figure 7 here] 

Experimental Settings and Results 

There are two parts of the experiment. The first part exhibits the behavior of BBs 

processing by comparing the BBIC algorithm to the sGA. The second part compares the 

performance of the BBIC algorithm to a group of competent algorithms. They are sGA-

FC, CSM, BOA, and hBOA. The simple Genetic Algorithm (sGA) is used as the basic 

reference. The details of the first part of the experiments are described in the following 

sections. 

Test Problems 

Most of the problems used in the experiment are synthetic functions. The problems are 

classified into two categories: non-deceptive and deceptive. A deceptive problem lures 

the algorithm away from the ideal solution. Generally, deceptive problems are more 

difficult to solve than non-deceptive problems. It is difficult to claim what algorithm is 

suitable for a particular class of problems. Nevertheless, an experiment can be 

conducted to support the statement. In this experiment, the Royal Road function (non-

deceptive) (Howard and Sheppard 2004) and the Trap-5 function (deceptive) (Beaudoin, 

Verel, Collard and Escazut 2006) were used. These two functions belong to the class of 

Additively Decomposable Functions (ADFs). 

The Royal Road function was designed to test the ability of GAs to compose 

BBs. The general k-bit Royal Road is defined as 
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Variables m and k are varied to produce a number of test functions. This 

problem is difficult because a hint about the BBs is not provided. The optimal solution 

is composed of all ones. This problem is representative of problems that have a simple 

BB structure. 

The well-known Trap functions were designed to study BBs and linkage 

problems in GAs. The general k-bit trap functions are defined as: 
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 and fhigh > flow. Usually, fhigh is set to k and flow is 

set to k-1. The Trap problem is defined using equation (10). 

The Trap functions fool the gradient-based optimizers to favor zeros, but the 

optimal solution is composed of all ones. 

Measurement 

To be able to visualize the behavior of BBs during processing, the BBs were classified 

into three classes: Pure BB, Mixed BB and Non BB. An example is shown in Figure 8. 

Pure BB means that the pattern in a chromosome corresponds to the ideal BBs in the 

problem. Mixed BB means that there is at least one allele (one bit) of the ideal BBs in 

the structure, thus Mixed BB can be regarded as a substantial source of genetic material 

in the recombination process (and also a source of diversity). Non BB means that no 

allele of the ideal BBs is in the structure. This class can be considered as a barrier to 

achieving the desired BBs. The number of BBs classified as Pure BB depends on the 

particular problem and its encoding length. Pure BB is used to indicate the performance 

of algorithms. 

In the experiment, the binary encoding length of Royal Road and Trap-5 

functions were 64 bits and 60 bits, respectively. The numbers of BBs classified as Pure 

BB were 8 and 12 for the Royal Road and Trap-5 problems, respectively. The number 

of BBs was measured in each generation over the entire population. For example, if a 

population size was 100 for the Trap-5 60-bit problem, there were 12 (BBs) x 100 

(Chromosomes), equal to 1,200 BBs (Pure + Mixed + Non BBs), in each generation. 

 [Figure 8 here] 

 



Building Blocks were used to illustrate the schema processing and the schema 

construction. There are two types of Building Blocks: common and difference 

(uncommon). The common BBs are the similar and contiguous bits found in two good 

chromosomes. The different BBs are uncommon contiguous bits found in good 

chromosomes. The numbers of common and different BBs were calculated from each 

Building Block identification operation. For example, there were two common BBs and 

four uncommon BBs in Figure 7. A change in numbers of the BBs in each type is an 

indicator of the behavior of the BBs during processing. For example, when the size of 

common BBs grows, it indicates that the BBs have been combined into larger BBs. This 

usually happens when the evolution has been converged to a local optimum. The 

number of BBs can be a good indicator of the diversity in the population. The ratio 

between the common and different BBs indicates the competition between alternate 

schemata.  

Conditions 

All tested problems were performed with 30 independent runs in both success and 

failure cases. All algorithms were required to find the optimal solution in all of the 30 

runs for both cases. In the success cases, the minimum population size was set to 

achieve the optimum in all of the runs. The failure case, the maximum population size 

was reported. The numbers of Function Evaluation did not exceed one million for the 

Royal Road problem, and fifty thousand for the Trap-5 problem. The BBIC algorithm 

uses the n-Best selection and draws only the good chromosomes that have above 

average fitness. The maximum number of the selected chromosomes, or subpopulation, 

was limited to half of the population size. The sGA employs the tournament selection 

method, and the tournament-size was four. The crossover rate of the sGA was set to 1.0 

for the best result. The mutation operator was not allowed in either algorithm because 

the aim of the experiment was to test the capability of the schema processing (the BB 

recombination), and thus it is better to avoid another source of genetic material. These 

parameter settings were the same for all test problems. In the failure case, the behavior 

of the sGA and the BBIC algorithm were shown only for the first one hundred 

generations.  

The performance of GAs is compared using the number of Function Evaluation 

(#FEs). All results are averaged over the 30 runs using the same parameters setting. The 

parameters setting and results of the Royal Road and the Trap-5 problems are shown in 

Table 1. 

 [Table 1 here] 

Note: #pop denotes the population size, #sub denotes the subpopulation (the selected individuals 

for identification process) and #FEs denotes the number of function evaluation. 



Results 

From the viewpoint of performance index (#FEs), the BBIC algorithm is inferior to the 

sGA in the Royal Road problem, but it outperforms the sGA in the Trap-5 problem. The 

population sizes in the success and failure cases are considered upper and lower bounds 

of the initial source of the diversity because there was no mutation or other source of 

genetic material during the process.  

By design, the success case requires a minimum population size to achieve the 

optimal solution in all of the runs. This is regarded as an upper bound of the diversity 

that is required to obtain reliable results from the experiment. The failure case requires a 

maximum population size so that the optimal solution is not attained in all of the runs. 

This setting implies that if there is a larger population, the optimal solution can be found 

at least once. The population size in the failure case can be interpreted as a lower bound 

of the diversity that existed in the population. The behaviors of BBs during processing 

in both problems are discussed in the following paragraphs. 

Behavior of BBs 

The success of an algorithm is affected by the diversity of the population (to provide the 

genetic material). In the success case, the population size of the BBIC algorithm is 

larger than the sGA in the Royal Road problem, and it is smaller than the sGA in the 

Trap-5 problem. In the failure case, the population size of the BBIC algorithm is equal 

to the sGA in the Royal Road problem, and it is smaller than the sGA in the Trap-5 

problem. The size of the subpopulation was set to the maximum value (half population 

size) in the failure case to provide the highest diversity. This setting guarantees the 

lower bound of the population size that cannot find the optimal solution in all of the 

runs. These facts indicate that the BBIC algorithm is better than the sGA at maintaining 

the diversity in the Trap-5 problem, and it is worse than the sGA in the Royal Road 

function.  

The behavior of the sGA in the Royal Road problem is shown in Figure 9. The 

different types of BBs illustrate the change or transformation during the evolution 

process. Because the Royal Road problem is not deceptive, only the Pure BBs and the 

Mixed BBs compete in Figure 9(a,b). The number of Pure BBs shows the quality of the 

solution. There are eight BBs in this problem. In the success case, the number of Pure 

BBs increases continuously until the optimal solution is obtained because there is 

sufficient diversity. Figure 9(c,d) shows the convergence pattern of the entire 

population. In the failure case, the number of pure BBs is saturated at 5 from the 21
th

 

generation onward. 

 [Figure 9 here] 

 



For the BBIC algorithm, the behavior is similar to the sGA (Figure 10(a-d)). 

There is a slight different in the failure case. This result can be observed in Figure 10b, 

which shows that the number of Mixed BBs is always higher than the number of pure 

BBs. The algorithm cannot learn enough to achieve good solutions, so the quality of the 

solutions in Figure 10d is inferior to the sGA (the BBIC algorithm achieved only 3 Pure 

BBs versus 5 pure BBs in the sGA). 

[Figure 10 here] 

 

The results from the Trap-5 problem are shown in Figures 11 and 12. In Figure 

11, the overall behavior of the sGA for this problem is similar to Figure 9 except that 

there are Non BBs in the competition. This result is due to the deceptive impact of the 

Trap function. 

 [Figure 11 here] 

 

For this problem, the BBIC algorithm performed better than the sGA because of 

the recombination power of the Building Block composition process. Comparing the 

quality of solutions of the sGA (Figure 11c) and the BBIC algorithm (Figure 12c), the 

number of pure BBs in the BBIC algorithm is higher than the sGA (for example, at the 

10th generation). This is also noticeable in the failure case (BBIC in Figure 12b); the 

mixed BBs are maintained at a higher level than in the sGA (Figure 11b). 

 [Figure 12 here] 

Competition among BBs 

The data from the experiments on the BBIC algorithm are used to illustrate the 

competition among BBs. The average size of the BBs and the number of BBs are good 

indicators of the competition between common and different BBs. Figure 13(a-d) 

illustrates the competition behavior in the Royal Road problem. Figure 14(a-d) 

illustrates the Trap-5 problem. In both figures, CB denotes the average common 

Building Block size, DB denotes the average different Building Block size, #CB 

denotes the number of common BBs and #DB denotes the number of different BBs. 

 [Figure 13 here] 

 

The average sizes of BBs in Figure 13(a-b) and the number of BBs in Figure 

13(c-d) indicate the convergence. These two values are opposite. If the size of BBs 

increases, the number of BBs decreases. In the success case (Figure 13a), only the 

common BBs are gradually developed while the different BBs remain constant. In the 



failure case (Figure 13b), the average size of the different BBs grows slightly because 

there are several mixed BBs (Figure 9b). The number of BBs reduces rapidly until the 

31th generation at which point rate of reduction slows down (Figure 13d). The rates of 

convergence of the success and failure cases are different. 

 [Figure 14 here] 

 

For the deceptive problem, there was a prominent competition between the 

structures of good and deceptive solutions. In the success case (Figure 14a), the average 

size of different BBs develops progressively because of the deceptive bias.  

 For both the Royal Road and the Trap-5 problems, in the success case, the 

required size of the subpopulation in the n-Best selection was approximately 10% of the 

population size. This small number results in fast convergence from the restricted 

diversity. Furthermore, the desired solution can be achieved from the selected 

chromosomes. This evidence supports the belief that among the good chromosomes 

there are good substructures. If the good structures can be identified correctly, they can 

be used to produce good results. Finding a large common Building Block is more 

difficult than finding a small one. Therefore, the BBs in the Royal Road problem (8-bit 

BB) are harder to identify than the BBs in the Trap-5 function (5-bit BB), and thus the 

Royal Road problem requires a larger population size than the Trap-5 problem. The 

collation of all pairs in the Building Block identification process provides a high degree 

of variation, and the recombination operation in the Building Block composition 

process generates a great number of possible patterns for the chromosome structure. 

The number of BBs in each position in the archive varies (see Figure 7). 

Normally, the first position has more members because the Building Block 

identification process proceeds from left to right. When the Building Block size is 

bigger than a few bits, the next positions have fewer members because the next BBs 

have to be identified in sequence. This occurs repeatedly throughout the positions of the 

chromosome because the pattern of identification is from left to right.  

Benchmark and Performance 

In this section, several problems were used to test the performance of the BBIC 

algorithm. Most of them are BB validation problems. The results obtained using the 

BBIC algorithm are compared to the results obtained using several competing 

algorithms: the simple Genetic Algorithm (sGA), the sGA with Fragment crossover 

(sGA-FC), the Chi-square matrix (CSM), the Bayesian optimization algorithm (BOA) 

and the hierarchical Bayesian optimization algorithm (hBOA). The benchmark 

problems are the OneMax, the Royal Road, the Trap-5, the Hierarchical-If-and-only-If 

(HIFF) (Yu and Goldberg 2006), and the hierarchical Trap-1 (hTrap-1) function (Yu, 

Golberg, Sasty, Lima and Pelikan 2009). The details of these problems can be found in 

the references, and their characteristics are classified (Figure 15). Only the OneMax 



problem is not a BB validation problem and is used as a performance reference for 

general cases. Both Trap-5 and hTrap-1 are deceptive problems, but Trap-5 has a 

straightforward BB structure, whereas hTrap-1 has a hierarchical BB structure. The 

HIFF problem is the only one that has a hierarchical BB structure and a multimodal 

fitness landscape, which has two optimal solution structures. The HIFF and the hTrap-1 

problems are Hierarchical Decomposable Function (HDF) problems, which are harder 

to solve than Additively Decomposable Function (ADF) problems. 

 [Figure 15 here] 

 

All of the benchmark problems were performed with 30 independent runs, and 

they were required to find the optimal solution in all of the runs. There are two versions 

of the BBIC algorithm: without mutation (BBIC-1) and with mutation, rate=0.02, 

(BBIC-2). We want to study how mutations affect the BBs and how they act as a source 

of genetically diverse material in each problem. The minimum population size used to 

achieve the optimum in 30 runs is shown in Table 2. The average number of function 

evaluations is compared to the sGA, sGA-FC, CSM, BOA and hBOA. The results are 

shown in Table 3. The results show that the BBIC-2 algorithm outperforms the BOA, 

hBOA and CSM in all of the problems, and the BBIC-1 algorithm outperforms all 

competitors in the Royal Road (except the 64-bit problem), the Trap-5, the HIFF and 

the hTrap-1 problems. The performance of the BBIC-1 algorithm (without mutation) on 

the tested problems, ordered from high to low, is as follows: OneMax, Royal Road, 

HIFF, Trap-5 and hTrap-1. In the same way, the performance of the BBIC-2 algorithm 

(with mutation) is ranked in the following order: OneMax, Royal Road, HIFF, hTrap-1, 

and Trap-5.  

There are two parameter settings in the BBIC algorithm, as shown in Table 2. 

The population size indicates the level of diversity required to explore various solutions 

until the optimal solution is attained. The subpopulation denotes the level of selection 

pressure required to assure the quality of the result. The selection pressure is calculated 

as the size of the subpopulation (#sub) divided by the size of the population (#pop). A 

larger problem size or a harder problem requires that higher solution quality be obtained 

using a higher selection pressure. The diversity extension from the mutation process can 

compensate for the restricted variation of the population. The BBIC-2 algorithm 

requires a smaller population size and a smaller subpopulation size because of the 

mutation.  

The results in Table 3 convince us that the proposed algorithm is suitable for 

ADF and HDF problems that are composed of tightly grouped BBs. 

 [Table 2 here] 

(Note: #pop means population and #sub means subpopulation or selected chromosomes from 

the n-Best selection method. The bold face indicates the minimum value.) 



[Table 3 here] 

(Note: N/A denotes that the data were not available because the optimal solution cannot be 

found under the limited number of function evaluations (#FEs ≤ 1,000,000). The bold face 

indicates the best value.) 

Discussion 

The main component of the BBIC algorithm is the Building Block, which will be 

summarised in this section. There are two types of BBs: common and different. Many 

chromosomes in the selection process will be paired. The common BBs are regarded to 

have the same bias between two collated chromosomes. The identification procedure 

prevents the plausible unknown BBs from being disrupted. If the rate of construction of 

the BBs is higher than the rate of disruption of the BBs, the quality of the solutions will 

be improved. This is the main mechanism of the evolutionary process. The results of 

sGA-FCs and EDAs in several published papers confirm that various types of Building 

Block identification processes are useful (Larrañaga and Lozano 2001; Pelikan, 

Goldberg, and Lobo 2002; Pelikan, Sastry, and Cantú-Paz 2006). In regard to the use of 

explicit building blocks in GAs, the messy GA and its variants (Goldberg, Korb and 

Deb 1989; Goldberg, Deb, Kargupta and Harik 1993) are directly related to our work. 

The method of messy GAs is to improve the performance by increasingly build longer, 

highly fit strings from shorter building blocks. This is similar to how we compose BBs. 

However, our method is different in the identification of BBs and how BBs are stored 

and used. 

The size of the BBs gives indirect information about the level of knowledge or 

diversity. If the size of the common BBs is longer, the size of the different BBs is 

shorter. This means that the evolution process has learned something about the models. 

The different BBs preserve the unexploited structures or diversity of the search space. 

In the early generations, the average size of the BBs is small because the diversity is 

high. Although the common BBs in the early stage are not reliable, the number of 

different BBs is twice the number of common BBs. The different BBs act as the choices 

for search space exploration. In the middle generations, the common BBs are more 

stable and more reliable. The different BBs act as the more distinct and more limited 

alternatives. In the later generations, the different BBs work as rare mutations because 

they are too short, and thus they have a very low chance to be selected. 

Conclusion 

The contiguous substructures of a chromosome can be regarded as the Building Blocks. 

They are identified from the mutual data between two chromosomes. The proposed BBs 

are a simple form of the explicit BBs because they are short, low-order and come from 

the highly-fit chromosomes. The BBIC algorithm uses the centralized knowledge, 

similar to EDAs, that all of the BBs are retained in an archive to create new offspring. 



The Building Block composition process is simple and direct: it proceeds from left to 

right (first-bit to last-bit) to form a new chromosome using random selection from the 

archive.  

The experimental results of the BBIC algorithm confirm that the identification 

of BBs is an important process that guides the recombination procedure to improve the 

solutions. The execution time of the Building Block identification and Building Block 

composition processes are O((n)
2
•l) and O(n), respectively, where l is the chromosome 

length and n is the number of selected chromosomes. This is significantly less than the 

execution time of the CSM, BOA and hBOA. The proposed method is simple to 

implement and easy to tune. In addition, this method efficiently solves difficult 

problems of both the ADF and HDF classes. 
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Table 1. Experimental parameter settings and results. 

 

Table 2. Benchmark parameter settings. 

 

  



 

Table 3. Benchmark results. 

 

 

 

Figure 1. An example of possible patterns of BBs in a chromosome (A = Allele, C = 

Chromosome, B = Building Block). 

 

Figure 2. An example of BBs in a schema (B = Building Block). 



 

Figure 3. Building Block identification method. 

 

Figure 4. Pseudocode for the BBIC algorithm. 



 

Figure 5. Pseudocode for Building Block identification. 

  



 

 

Figure 6. Pseudocode for Building Block composition. 



 

Figure 7. Building Block identification and composition methods. 

  



 

 

Figure 8. Examples of BB classification. 

 

Figure 9. The sGA results for the Royal Road 64-bit problem: (a)(b) the number of BBs 

in each generation and (c)(d) the number of ideal BBs (Pure BBs) in each generation. 



 

Figure 10. The BBIC algorithm results for the Royal Road 64-bit problem: (a)(b) the 

number of BBs in each generation, (c)(d) the number of ideal BBs (Pure BBs) in each 

generation. 

  



 

 

Figure 11. The sGA results for the Trap-5 60-bit problem: (a)(b) the number of BBs in 

each generation and (c)(d) the number of ideal BBs (Pure BBs) in each generation. 

  



 

 

Figure 12. The BBIC algorithm results for the Trap-5 60-bit problem: (a)(b) the number 

of BBs in each generation, (c)(d) the number of ideal BBs (Pure BBs) in each 

generation. 

  



 

 

Figure 13 The BBIC algorithm results for the Royal Road 64-bit problem: (a)(b) the 

average size of the BBs in each generation and (c)(d) the number of BBs in each 

generation. Note: CB denotes the average common Building Block size, DB denotes the 

average different Building Block size, #CB denotes the number of common BBs and 

#DB denotes the number of different BBs. 

  



 

 

Figure 14 The BBIC algorithm results for the Trap-5 60-bit problem: (a)(b) the average 

size of the BBs in each generation and (c)(d) the number of BBs in each generation. 

Note: CB denotes the average common Building Block size, DB denotes the average 

different Building Block size, #CB denotes the number of common BBs and #DB 

denotes the number of different BBs. 

 

Figure 15. Characteristics of the benchmark problems. 
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