
The Use of Explicit Building Blocks in Evolutionary Computation

Chalermsub Sangkavichitr

Department of Computer Engineering, Chulalongkorn University, Bangkok 10330,

Thailand, Tel: +66-(0)2-218-6956, 2186957, Fax: +66-(0)2-218-6955

Prabhas Chongstitvatana

Department of Computer Engineering, Chulalongkorn University, Bangkok 10330,

Thailand, Tel: +66-(0)2-218-6956, 2186957, Fax: +66-(0)2-218-6955

Corresponding author: Chalermsub Sangkavichitr e-mail: penockio@gmail.com

The Use of Explicit Building Blocks in Evolutionary Computation

This paper proposes a new algorithm to identify and compose building blocks.

Building blocks are interpreted as common subsequences between good

individuals. The proposed algorithm can extract building blocks from a

population explicitly. Explicit building blocks are identified from shared alleles

among multiple chromosomes. These building blocks are stored in an archive.

They are recombined to generate offspring. The additively decomposable

problems and hierarchical decomposable problems are used to validate the

algorithm. The results are compared with the Bayesian Optimization Algorithm,

the Hierarchical Bayesian Optimization Algorithm, and the Chi-square Matrix.

This proposed algorithm is simple, effective, and fast. The experimental results

confirm that building block identification is an important process that guides the

recombination procedure to improve the solutions. In addition, the method

efficiently solves hard problems.

Keywords: Genetic Algorithm; Estimation of Distribution Algorithm; Building

Block; Linkage; Multi-parent Recombination

Introduction

Evolutionary computation (EC) is a class of algorithms that are suitable for problems

with a very large search space (Yu and Gen 2010). The classic algorithm in EC is the

genetic algorithm (GA) (Goldberg 1989), which was inspired by the process of genetic

breeding in nature. Genetic algorithms have four main processes. First, the solution is

encoded into a specific pattern, such as a binary string, called a chromosome or an

individual and a number of encoded solutions, called a population, are generated.

Second, good chromosomes are selected from the population. Third, selected

chromosomes are mated using a crossover operator. Fourth, mated chromosomes are

mutated. The fourth process is an optional step. New offspring are produced after these

processes are completed.

As in nature, the evolution process will improve solutions from generation to

generation. The EC algorithms are based on the premise that better solutions can evolve

through selection and genetic operations (Goldberg and Sastry 2010).

In GAs, the solutions are improved based on the assumption that substructures

of the good solutions exist in the good individuals. If the substructures can be identified

and combined correctly, the new solutions will be better (Goldberg and Sastry 2010).

The schema theorem (Schaefer 2007) tells us that the properties of good substructures

are “short, low-order, highly-fit.” These substructures are called building blocks (BBs).

The building block hypothesis (BBH) states that the short, low-order, highly-fit

schemata recombine to form higher order schemas of conceivably higher fitness. This

hypothesis is used to explain the mechanism of GAs. To perform the recombination, a

crossover operator is used. The crossover operation was claimed to construct rather than

disrupt BBs (Schaefer 2007). Generally, one-point crossover is sufficient to solve

problems. However, several crossover methods have been introduced to improve the

effectiveness of the recombination, such as the two-point, multiple-point, and uniform

crossover methods (Sivanandam and Deepa 2008). Different methods work well for

different types of problems. The mutation operation was reported to provide a new

source of genetic material (Schaefer 2007). However, setting the appropriate mutation

rate is difficult. We only know that it should be low. Conversely, the crossover rate

should be high (Lobo, Lima and Michalewicz 2007; Eiben and Smith 2011). The

canonical Genetic Algorithm is called the simple GA. It uses fitness-proportion

selection, single-point crossover and one-bit mutation. The simple GA algorithm is easy

to use, but it cannot solve hard problems effectively (Sivanandam and Deepa 2008).

However, several GAs have been successfully applied to a wide range of real world

problems, such as Wangka (2009), Cheung, Cheung, Tobar, Caram and Garcia (2011),

Alabsi and Naoum (2012), and Ozcan and Esnaf (2013).

Multiple parent recombination operators have been studied (Eiben, Rauee and

Ruttkay 1994; Eiben 2000; Ting and Chen 2007). Rather than limiting the gene from

two parents, the gene pool from the population was used. Some forms of explicit blocks

of genes that come from multiple parents were introduced in many pioneering works

(Syswerda 1993; Smith and Fogarty 1995; Levenick 1995). These “blocks” were used

by recombination operators to compete for a position over certain loci. In Syswerda

(1993), an explicit model was created by counting the number of alleles in each bit

position contributed by the selected population. This information was used to perform

recombination of genes. Smith and Fogarty (1995) used the linkage between blocks of

genes of varying size to generate offspring.

A parallel concept to Building Blocks is linkage learning. Linkage is a relation

between decision variables. While Building Blocks are defined as a group of genes,

linkage emphasizes more on the relationship between genes. One important factor in the

success of Evolutionary algorithms is a good coding scheme that puts genes in the same

building blocks together thus providing tight linkage. Many linkage learning methods

have been proposed to discover good building blocks, for example, linkage learning

genetic algorithm (LLGA) and its variance (Chen and Goldberg 2002; Chen 2006; Chen

and Lim 2008). A good survey of the linkage learning can be found in (Chen, Yu,

Sastry and Goldberg 2007).

If the BBs are mixed properly, the quality of the result will be improved

(Goldberg and Sastry 2010). Therefore, the BBs must be identified. Building Block

Identification (Aporntewan and Chongstitvatana 2005) is a method that explicitly

identify building blocks using correlation between genes. This knowledge is then used

to partition genes into groups. Once the building blocks are identified, the appropriate

crossover is used to recombine BBs. Although there are many ways to identify the

building blocks, a majority of the methods are Estimation of Distribution Algorithms

(EDAs) (Larrañaga and Lozano 2001; Pelikan, Goldberg, and Lobo 2002; Pelikan,

Sastry, and Cantú-Paz 2006). The algorithms that employ some data structure (so called

“model”) to organize the decision variables are also considered to use linkage. They

include the probabilistic model-building genetic algorithms (PMBGAs) or EDAs

(Coffin and Smith 2008) where the probabilistic models are used to represent

relationship of decision variables. In the EDAs, knowledge is shared using a distribution

model for the population, and new offspring are sampled from the model. However,

most EDAs require some knowledge to identify the relationships between individuals in

a population and to build a model. Because BBs are explicitly extracted in terms of

probabilistic models, EDAs can solve hard problems effectively (Larrañaga, and

Lozano 2001; Pelikan, Sastry, and Cantú-Paz 2006). The knowledge sharing in both the

model building and model sampling processes is the main advantage of the EDA

method.

The messy GA (mGA) is another approach that uses explicit BBs in the early

stage (Goldberg, Korb and Deb 1989; Goldberg, Deb, Kargupta and Harik 1993). The

messy GA worked by building up increasingly longer and better strings from shorter

building blocks. It progressed in two phases: primordial and juxtapositional. The first

phase built up the population of small and highly fit candidate. The second phase put

them together to form solutions. The juxtaposition is performed by “cut” and “splice”

operators that work on messy encoding similar to the crossover operators work on a

fixed length string. A newer generation of mGA is the gene expression messy Genetic

Algorithm (gemGA) (Kargupta 1996) that simplified the encoding of strings and

incorporate linkage learning phase which resulted in a large reduction of running time.

A recent study proposed a simplified BB, called a “Fragment” (Sangkavichitra and

Chongstitvatana 2010). The substructures of BBs are defined as the substructures that

two highly fit individuals have in common. These substructures are the Fragments.

According to the BBH, the Fragments are the BBs because they can be recombined into

higher order BBs (Goldberg and Sastry 2010). The simple GA with Fragment Crossover

(sGA-FC) method is introduced. It is based on the simple GA and a special crossover

(Sangkavichitra and Chongstitvatana 2010). The Fragment Crossover (FC) tries to

maximize the schema exchange using multiple-point crossover scheme.

In this paper, we propose a new simple method that was inspired by multi-parent

recombination, which can share alleles among multiple chromosomes, and EDAs,

which can identify and compose the BBs explicitly. The proposed method is named the

“Building Blocks Identification and Composition” (BBIC) algorithm. Two well-known

BB validation problems were used to demonstrate the behavior of the proposed

algorithm. The capabilities of the BBIC algorithm were benchmarked using a set of

hard problems (Collard, Gaspar, Clergue and Escazut 1998; Finger, Stutzle and

Lourenco 2002). The results were compared with the sGA-FC, the Chi-square Matrix

(CSM) (Aporntewan and Chongstitvatana 2004), the Bayesian Optimization Algorithm

(BOA) (Pelikan 2005), and the Hierarchical Bayesian Optimization Algorithm (hBOA)

(Pelikan 2005). The proposed method outperforms these algorithms in terms of

the number of function evaluations and the execution time.

The paper is organized as follows. The Building Block definition is presented in

Section 2. Section 3 describes the BBIC algorithm. The experiment and results are

explained in Section 4. The benchmark problems and results are presented in Section 5.

Section 6 discusses a plausible mechanism that explains the behavior of the algorithm.

Finally, concluding remarks about the proposed method are given in Section 7.

Building Block

Generally, GAs are simple to use but the underlying mechanism is difficult to

understand. The schema theorem was proposed to explain the effect of each operator

(selection, crossover, and mutation) on the evolution. The effect of recombination

process on BBs is not easily understood because it has an indirect impact on BBs. This

paper introduces a simpler form of the Building Block. The proposed Building Block is

defined as a contiguous substructure of a chromosome, and is a part of a subschema.

The defined Building Block can be interpreted as a basic form of the explicit

subschema. Throughout this article, we will use this definition of Building Block. The

BBs in a chromosome can take many possible patterns, as shown in Figure 1. An

example of a BB is shown in Figure 2. The minimum size of a BB is one allele and, the

maximum size is equal to the length of the chromosome.

[Figure 1 here]

[Figure 2 here]

BBIC: Building Blocks Identification and Composition algorithm

In this section, we describe the proposed algorithm. The BBIC algorithm consists of two

main parts: Building Block identification (BBI) and Building Block composition

(BBC). The BBI process extracts the substructures that are common between good

individuals (selected chromosomes), and the BBC process assembles them to create

new offspring. The main objective of the BBIC algorithm is to capture and combine the

sharing knowledge between good individuals. The main advantages of the algorithm are

its simplicity and its performance.

Building Block Identification

Typically, GAs do not explicitly recognize BBs. The main operator that acts on BBs is

the crossover, which processes BBs in an implicit manner (Schaefer 2007). There are

many crossover methods, each suitable for a different type of problem. Most of the

methods recombine the schemata without knowledge about the BBs. However, they

work well because the crossed chromosomes are good solutions that have passed a

selection process and are expected to contain the ideal BBs (Goldberg and Sastry 2010).

The crossover operation mixes the chromosomes. Normally, these methods differ in the

number of cross points and the number of parents. In the exchange, the crossover

operator only manipulates the substructures or alleles that differ between chromosomes.

The similar substructures remain in the same place, only the distinct parts are moved or

separated. This exchange mechanism causes schema disruption. The different patterns

of disruption in each crossover method bias the results in different ways (Smit and

Eiben 2010). Substructures that are common between chromosomes are unchanged

during crossover. The common substructures are candidate BBs. We consider the

similarity of bits that are in the same position of two chromosomes. This information

can reveal the boundary of the potential BBs. The distinct parts should not be disturbed

because they might be part of the BBs. We define the BB as the substructures that are

common and uncommon between any two chromosomes. Both types of BB are retained

to maintain the diversity in each generation. Evolution mechanisms (selection and

recombination) process these BBs to improve the quantity and quality of the solutions.

 [Figure 3 here]

The BBI process is illustrated by an example in Figure 3. Note that the string is

indexed from left to right starting at position 1. Given two 10-bit chromosome

sequences, C1 = (1,0,1,1,0,1,0,1,0,1) and C2 = (1,1,1,1,0,0,1,0,0,1), the BBs of C1 and

C2 are B1= (1), B2,1= (0), B2,2= (1), B3= (1,1,0), B4,1= (1,0,1), B4,2= (0,1,0), and

B5= (0,1) consecutively.

A common schema is defined as any identical contiguous parts between two

chromosomes, and the uncommon schema is defined as the difference. The BB can be

interpreted as contiguous subsequences that are common and uncommon between two

chromosomes. The length of each BB must be greater than or equal to one bit. The

definitions of the order and length of the BB are similar to those used in GAs. The order

of a schema is the number of fixed bit positions. The BB comprises all of the fixed bit

positions; therefore, the size of a BB is the order, e.g., in Figure 3, B3 = (1,1,0) and

order(B3) = size(B3) = 3. The length of a schema is the distance between the first and

last fixed bit positions, e.g., in Figure 3, B3 begins at position 3 and ends at position 5

and length(B3) = 5-3 = 2. For BBs, the short and low-order schemata have a high

potential to survive, and they will be recombined to create better solutions. The BBs can

be considered as independent contiguous subschema that are tightly linked.

Building Block Composition

The knowledge sharing in the recombination process and the creation of new offspring

process provides the main advantage of the multi-parent crossover GAs (Eiben 2002)

and EDAs. These methods gain exploration power to find possible patterns of good

solutions and enhance the quality of the solutions (Toussaint 2003). The BBIC

algorithm maintains the diversity of the BBs obtained in the identification process by

keeping them in an archive. The building block composition demonstrates that the BBs

are mixed in an explicit manner. There are many ways to compose BBs, but a simple

method is sufficient. The BBs are selected one by one from the archive to create a new

offspring. They are combined sequentially starting from the first position, as shown in

Figure 7. In the archive, many BBs begin at the same position. If there is no guidance as

to which BB is better, a random selection will avoid biases. When the first BB is

selected for the first position, the next BB is concatenated to it, and the process is

repeated until a new chromosome is formed. If there is no BB that starts at the current

position, a random binary value (0 or 1) is used at that position. This situation might

occur if the diversity of the population is too low because the population size is too

small or the population is nearly converged.

An overview of the BBIC algorithm (Figure 4) is as follows. First, the good

solutions are selected from the population. Based on the schema theorem and the BBH,

the chance of survival for a schema increases in a chromosome that has fitness above

average. Thus, the above average chromosome will be selected using the n-Best

selection method (select n best individuals). Second (Figure 5), BBs are identified using

the common schema partitioning criterion mentioned previously. In this step, every

individual will be collated to explore every possible building block. Third, all BBs are

labelled using their beginning position in the original individual. An example is shown

in Figure 7. Building Block B2 begins at position 4 in the chromosome and is stored in

an archive. Fourth (Figure 6), the BBs in the archive are randomly selected one by one

to compose the new chromosome from the first position to the last position. This

process is repeated until the new population is fulfilled.

 [Figure 4 here]

[Figure 5 here]

[Figure 6 here]

The time complexity of the Building Block identification and the Building Block

composition processes are O((n)
2
·l) and O(n), respectively, where l is the chromosome

length, and n is the number of selected chromosomes. There are two basic parameters,

the population size and the number of selected chromosomes in the n-Best selection

method. Compared to other GAs, or EDAs, it is easy to tune the algorithm. The

mutation process is optional.

Figure 7 shows an example of the Building Block identification and the Building

Block composition process. Two chromosome, C1 = (1010101010) and C2 =

(1011011001), are compared using the common schema partitioning criterion. Six BBs

are found. There are two common parts and two different parts between C1 and C2. The

Building Blocks B1 = (101) and B4 = (10) are the common parts, and B2 = (010), B3 =

(101), B5 = (10) and B6 = (01) are the different parts. The starting positions of Building

Blocks B1 - B6 are 1, 4, 4, 7, 9 and 9. The BBs are labelled and archived into a

composition table according to the beginning positions. The results are obtained once all

pairs of the selected individuals have been collated. They are shown in the next

composition table in Figure 7. The next process is Building Block composition, which

creates new offspring for the next generation. In the example, two new chromosomes

were produced, N1 and N2. Chromosome N1 was started by randomly selecting a

Building Block for the position one. Building Block B31 was selected. The length of

B31 is two, thus the next Building Block must begin at the position three. Building

Block B12, B32 and B5 were randomly selected to complete N1. Chromosome N2 was

created in the same manner as N1, but the last position has no Building Block in the

archive. Therefore, a 0 or 1 bit is randomly generated.

 [Figure 7 here]

Experimental Settings and Results

There are two parts of the experiment. The first part exhibits the behavior of BBs

processing by comparing the BBIC algorithm to the sGA. The second part compares the

performance of the BBIC algorithm to a group of competent algorithms. They are sGA-

FC, CSM, BOA, and hBOA. The simple Genetic Algorithm (sGA) is used as the basic

reference. The details of the first part of the experiments are described in the following

sections.

Test Problems

Most of the problems used in the experiment are synthetic functions. The problems are

classified into two categories: non-deceptive and deceptive. A deceptive problem lures

the algorithm away from the ideal solution. Generally, deceptive problems are more

difficult to solve than non-deceptive problems. It is difficult to claim what algorithm is

suitable for a particular class of problems. Nevertheless, an experiment can be

conducted to support the statement. In this experiment, the Royal Road function (non-

deceptive) (Howard and Sheppard 2004) and the Trap-5 function (deceptive) (Beaudoin,

Verel, Collard and Escazut 2006) were used. These two functions belong to the class of

Additively Decomposable Functions (ADFs).

The Royal Road function was designed to test the ability of GAs to compose

BBs. The general k-bit Royal Road is defined as

otherwise ;0

= if ;
),,(1

kuf
bbE kk , (9)

where bi is in {0,1},

k

i ibu
1

 and f = k.

Additively decomposable functions, denoted by
kmE
 are defined as

m

i

k

iikmkm kkEkkE
1

1 }1,0{),()(. (10)

Variables m and k are varied to produce a number of test functions. This

problem is difficult because a hint about the BBs is not provided. The optimal solution

is composed of all ones. This problem is representative of problems that have a simple

BB structure.

The well-known Trap functions were designed to study BBs and linkage

problems in GAs. The general k-bit trap functions are defined as:

)1/()(
),,(1

kfuf

f
bbE

lo wlo w

h ig h

kk
o th erw ise;

if; ku
, (11)

where bi is in {0,1},

k

i ibu
1

 and fhigh > flow. Usually, fhigh is set to k and flow is

set to k-1. The Trap problem is defined using equation (10).

The Trap functions fool the gradient-based optimizers to favor zeros, but the

optimal solution is composed of all ones.

Measurement

To be able to visualize the behavior of BBs during processing, the BBs were classified

into three classes: Pure BB, Mixed BB and Non BB. An example is shown in Figure 8.

Pure BB means that the pattern in a chromosome corresponds to the ideal BBs in the

problem. Mixed BB means that there is at least one allele (one bit) of the ideal BBs in

the structure, thus Mixed BB can be regarded as a substantial source of genetic material

in the recombination process (and also a source of diversity). Non BB means that no

allele of the ideal BBs is in the structure. This class can be considered as a barrier to

achieving the desired BBs. The number of BBs classified as Pure BB depends on the

particular problem and its encoding length. Pure BB is used to indicate the performance

of algorithms.

In the experiment, the binary encoding length of Royal Road and Trap-5

functions were 64 bits and 60 bits, respectively. The numbers of BBs classified as Pure

BB were 8 and 12 for the Royal Road and Trap-5 problems, respectively. The number

of BBs was measured in each generation over the entire population. For example, if a

population size was 100 for the Trap-5 60-bit problem, there were 12 (BBs) x 100

(Chromosomes), equal to 1,200 BBs (Pure + Mixed + Non BBs), in each generation.

 [Figure 8 here]

Building Blocks were used to illustrate the schema processing and the schema

construction. There are two types of Building Blocks: common and difference

(uncommon). The common BBs are the similar and contiguous bits found in two good

chromosomes. The different BBs are uncommon contiguous bits found in good

chromosomes. The numbers of common and different BBs were calculated from each

Building Block identification operation. For example, there were two common BBs and

four uncommon BBs in Figure 7. A change in numbers of the BBs in each type is an

indicator of the behavior of the BBs during processing. For example, when the size of

common BBs grows, it indicates that the BBs have been combined into larger BBs. This

usually happens when the evolution has been converged to a local optimum. The

number of BBs can be a good indicator of the diversity in the population. The ratio

between the common and different BBs indicates the competition between alternate

schemata.

Conditions

All tested problems were performed with 30 independent runs in both success and

failure cases. All algorithms were required to find the optimal solution in all of the 30

runs for both cases. In the success cases, the minimum population size was set to

achieve the optimum in all of the runs. The failure case, the maximum population size

was reported. The numbers of Function Evaluation did not exceed one million for the

Royal Road problem, and fifty thousand for the Trap-5 problem. The BBIC algorithm

uses the n-Best selection and draws only the good chromosomes that have above

average fitness. The maximum number of the selected chromosomes, or subpopulation,

was limited to half of the population size. The sGA employs the tournament selection

method, and the tournament-size was four. The crossover rate of the sGA was set to 1.0

for the best result. The mutation operator was not allowed in either algorithm because

the aim of the experiment was to test the capability of the schema processing (the BB

recombination), and thus it is better to avoid another source of genetic material. These

parameter settings were the same for all test problems. In the failure case, the behavior

of the sGA and the BBIC algorithm were shown only for the first one hundred

generations.

The performance of GAs is compared using the number of Function Evaluation

(#FEs). All results are averaged over the 30 runs using the same parameters setting. The

parameters setting and results of the Royal Road and the Trap-5 problems are shown in

Table 1.

 [Table 1 here]

Note: #pop denotes the population size, #sub denotes the subpopulation (the selected individuals

for identification process) and #FEs denotes the number of function evaluation.

Results

From the viewpoint of performance index (#FEs), the BBIC algorithm is inferior to the

sGA in the Royal Road problem, but it outperforms the sGA in the Trap-5 problem. The

population sizes in the success and failure cases are considered upper and lower bounds

of the initial source of the diversity because there was no mutation or other source of

genetic material during the process.

By design, the success case requires a minimum population size to achieve the

optimal solution in all of the runs. This is regarded as an upper bound of the diversity

that is required to obtain reliable results from the experiment. The failure case requires a

maximum population size so that the optimal solution is not attained in all of the runs.

This setting implies that if there is a larger population, the optimal solution can be found

at least once. The population size in the failure case can be interpreted as a lower bound

of the diversity that existed in the population. The behaviors of BBs during processing

in both problems are discussed in the following paragraphs.

Behavior of BBs

The success of an algorithm is affected by the diversity of the population (to provide the

genetic material). In the success case, the population size of the BBIC algorithm is

larger than the sGA in the Royal Road problem, and it is smaller than the sGA in the

Trap-5 problem. In the failure case, the population size of the BBIC algorithm is equal

to the sGA in the Royal Road problem, and it is smaller than the sGA in the Trap-5

problem. The size of the subpopulation was set to the maximum value (half population

size) in the failure case to provide the highest diversity. This setting guarantees the

lower bound of the population size that cannot find the optimal solution in all of the

runs. These facts indicate that the BBIC algorithm is better than the sGA at maintaining

the diversity in the Trap-5 problem, and it is worse than the sGA in the Royal Road

function.

The behavior of the sGA in the Royal Road problem is shown in Figure 9. The

different types of BBs illustrate the change or transformation during the evolution

process. Because the Royal Road problem is not deceptive, only the Pure BBs and the

Mixed BBs compete in Figure 9(a,b). The number of Pure BBs shows the quality of the

solution. There are eight BBs in this problem. In the success case, the number of Pure

BBs increases continuously until the optimal solution is obtained because there is

sufficient diversity. Figure 9(c,d) shows the convergence pattern of the entire

population. In the failure case, the number of pure BBs is saturated at 5 from the 21
th

generation onward.

 [Figure 9 here]

For the BBIC algorithm, the behavior is similar to the sGA (Figure 10(a-d)).

There is a slight different in the failure case. This result can be observed in Figure 10b,

which shows that the number of Mixed BBs is always higher than the number of pure

BBs. The algorithm cannot learn enough to achieve good solutions, so the quality of the

solutions in Figure 10d is inferior to the sGA (the BBIC algorithm achieved only 3 Pure

BBs versus 5 pure BBs in the sGA).

[Figure 10 here]

The results from the Trap-5 problem are shown in Figures 11 and 12. In Figure

11, the overall behavior of the sGA for this problem is similar to Figure 9 except that

there are Non BBs in the competition. This result is due to the deceptive impact of the

Trap function.

 [Figure 11 here]

For this problem, the BBIC algorithm performed better than the sGA because of

the recombination power of the Building Block composition process. Comparing the

quality of solutions of the sGA (Figure 11c) and the BBIC algorithm (Figure 12c), the

number of pure BBs in the BBIC algorithm is higher than the sGA (for example, at the

10th generation). This is also noticeable in the failure case (BBIC in Figure 12b); the

mixed BBs are maintained at a higher level than in the sGA (Figure 11b).

 [Figure 12 here]

Competition among BBs

The data from the experiments on the BBIC algorithm are used to illustrate the

competition among BBs. The average size of the BBs and the number of BBs are good

indicators of the competition between common and different BBs. Figure 13(a-d)

illustrates the competition behavior in the Royal Road problem. Figure 14(a-d)

illustrates the Trap-5 problem. In both figures, CB denotes the average common

Building Block size, DB denotes the average different Building Block size, #CB

denotes the number of common BBs and #DB denotes the number of different BBs.

 [Figure 13 here]

The average sizes of BBs in Figure 13(a-b) and the number of BBs in Figure

13(c-d) indicate the convergence. These two values are opposite. If the size of BBs

increases, the number of BBs decreases. In the success case (Figure 13a), only the

common BBs are gradually developed while the different BBs remain constant. In the

failure case (Figure 13b), the average size of the different BBs grows slightly because

there are several mixed BBs (Figure 9b). The number of BBs reduces rapidly until the

31th generation at which point rate of reduction slows down (Figure 13d). The rates of

convergence of the success and failure cases are different.

 [Figure 14 here]

For the deceptive problem, there was a prominent competition between the

structures of good and deceptive solutions. In the success case (Figure 14a), the average

size of different BBs develops progressively because of the deceptive bias.

 For both the Royal Road and the Trap-5 problems, in the success case, the

required size of the subpopulation in the n-Best selection was approximately 10% of the

population size. This small number results in fast convergence from the restricted

diversity. Furthermore, the desired solution can be achieved from the selected

chromosomes. This evidence supports the belief that among the good chromosomes

there are good substructures. If the good structures can be identified correctly, they can

be used to produce good results. Finding a large common Building Block is more

difficult than finding a small one. Therefore, the BBs in the Royal Road problem (8-bit

BB) are harder to identify than the BBs in the Trap-5 function (5-bit BB), and thus the

Royal Road problem requires a larger population size than the Trap-5 problem. The

collation of all pairs in the Building Block identification process provides a high degree

of variation, and the recombination operation in the Building Block composition

process generates a great number of possible patterns for the chromosome structure.

The number of BBs in each position in the archive varies (see Figure 7).

Normally, the first position has more members because the Building Block

identification process proceeds from left to right. When the Building Block size is

bigger than a few bits, the next positions have fewer members because the next BBs

have to be identified in sequence. This occurs repeatedly throughout the positions of the

chromosome because the pattern of identification is from left to right.

Benchmark and Performance

In this section, several problems were used to test the performance of the BBIC

algorithm. Most of them are BB validation problems. The results obtained using the

BBIC algorithm are compared to the results obtained using several competing

algorithms: the simple Genetic Algorithm (sGA), the sGA with Fragment crossover

(sGA-FC), the Chi-square matrix (CSM), the Bayesian optimization algorithm (BOA)

and the hierarchical Bayesian optimization algorithm (hBOA). The benchmark

problems are the OneMax, the Royal Road, the Trap-5, the Hierarchical-If-and-only-If

(HIFF) (Yu and Goldberg 2006), and the hierarchical Trap-1 (hTrap-1) function (Yu,

Golberg, Sasty, Lima and Pelikan 2009). The details of these problems can be found in

the references, and their characteristics are classified (Figure 15). Only the OneMax

problem is not a BB validation problem and is used as a performance reference for

general cases. Both Trap-5 and hTrap-1 are deceptive problems, but Trap-5 has a

straightforward BB structure, whereas hTrap-1 has a hierarchical BB structure. The

HIFF problem is the only one that has a hierarchical BB structure and a multimodal

fitness landscape, which has two optimal solution structures. The HIFF and the hTrap-1

problems are Hierarchical Decomposable Function (HDF) problems, which are harder

to solve than Additively Decomposable Function (ADF) problems.

 [Figure 15 here]

All of the benchmark problems were performed with 30 independent runs, and

they were required to find the optimal solution in all of the runs. There are two versions

of the BBIC algorithm: without mutation (BBIC-1) and with mutation, rate=0.02,

(BBIC-2). We want to study how mutations affect the BBs and how they act as a source

of genetically diverse material in each problem. The minimum population size used to

achieve the optimum in 30 runs is shown in Table 2. The average number of function

evaluations is compared to the sGA, sGA-FC, CSM, BOA and hBOA. The results are

shown in Table 3. The results show that the BBIC-2 algorithm outperforms the BOA,

hBOA and CSM in all of the problems, and the BBIC-1 algorithm outperforms all

competitors in the Royal Road (except the 64-bit problem), the Trap-5, the HIFF and

the hTrap-1 problems. The performance of the BBIC-1 algorithm (without mutation) on

the tested problems, ordered from high to low, is as follows: OneMax, Royal Road,

HIFF, Trap-5 and hTrap-1. In the same way, the performance of the BBIC-2 algorithm

(with mutation) is ranked in the following order: OneMax, Royal Road, HIFF, hTrap-1,

and Trap-5.

There are two parameter settings in the BBIC algorithm, as shown in Table 2.

The population size indicates the level of diversity required to explore various solutions

until the optimal solution is attained. The subpopulation denotes the level of selection

pressure required to assure the quality of the result. The selection pressure is calculated

as the size of the subpopulation (#sub) divided by the size of the population (#pop). A

larger problem size or a harder problem requires that higher solution quality be obtained

using a higher selection pressure. The diversity extension from the mutation process can

compensate for the restricted variation of the population. The BBIC-2 algorithm

requires a smaller population size and a smaller subpopulation size because of the

mutation.

The results in Table 3 convince us that the proposed algorithm is suitable for

ADF and HDF problems that are composed of tightly grouped BBs.

 [Table 2 here]

(Note: #pop means population and #sub means subpopulation or selected chromosomes from

the n-Best selection method. The bold face indicates the minimum value.)

[Table 3 here]

(Note: N/A denotes that the data were not available because the optimal solution cannot be

found under the limited number of function evaluations (#FEs ≤ 1,000,000). The bold face

indicates the best value.)

Discussion

The main component of the BBIC algorithm is the Building Block, which will be

summarised in this section. There are two types of BBs: common and different. Many

chromosomes in the selection process will be paired. The common BBs are regarded to

have the same bias between two collated chromosomes. The identification procedure

prevents the plausible unknown BBs from being disrupted. If the rate of construction of

the BBs is higher than the rate of disruption of the BBs, the quality of the solutions will

be improved. This is the main mechanism of the evolutionary process. The results of

sGA-FCs and EDAs in several published papers confirm that various types of Building

Block identification processes are useful (Larrañaga and Lozano 2001; Pelikan,

Goldberg, and Lobo 2002; Pelikan, Sastry, and Cantú-Paz 2006). In regard to the use of

explicit building blocks in GAs, the messy GA and its variants (Goldberg, Korb and

Deb 1989; Goldberg, Deb, Kargupta and Harik 1993) are directly related to our work.

The method of messy GAs is to improve the performance by increasingly build longer,

highly fit strings from shorter building blocks. This is similar to how we compose BBs.

However, our method is different in the identification of BBs and how BBs are stored

and used.

The size of the BBs gives indirect information about the level of knowledge or

diversity. If the size of the common BBs is longer, the size of the different BBs is

shorter. This means that the evolution process has learned something about the models.

The different BBs preserve the unexploited structures or diversity of the search space.

In the early generations, the average size of the BBs is small because the diversity is

high. Although the common BBs in the early stage are not reliable, the number of

different BBs is twice the number of common BBs. The different BBs act as the choices

for search space exploration. In the middle generations, the common BBs are more

stable and more reliable. The different BBs act as the more distinct and more limited

alternatives. In the later generations, the different BBs work as rare mutations because

they are too short, and thus they have a very low chance to be selected.

Conclusion

The contiguous substructures of a chromosome can be regarded as the Building Blocks.

They are identified from the mutual data between two chromosomes. The proposed BBs

are a simple form of the explicit BBs because they are short, low-order and come from

the highly-fit chromosomes. The BBIC algorithm uses the centralized knowledge,

similar to EDAs, that all of the BBs are retained in an archive to create new offspring.

The Building Block composition process is simple and direct: it proceeds from left to

right (first-bit to last-bit) to form a new chromosome using random selection from the

archive.

The experimental results of the BBIC algorithm confirm that the identification

of BBs is an important process that guides the recombination procedure to improve the

solutions. The execution time of the Building Block identification and Building Block

composition processes are O((n)
2
•l) and O(n), respectively, where l is the chromosome

length and n is the number of selected chromosomes. This is significantly less than the

execution time of the CSM, BOA and hBOA. The proposed method is simple to

implement and easy to tune. In addition, this method efficiently solves difficult

problems of both the ADF and HDF classes.

References

Alabsi, F. and Naoum, R. (2012), ‘Fitness Function for Genetic Algorithm used in

Intrusion Detection System’, International journal of Applied Science and

Technology, 2, 129–134 .

Aporntewan, C. and Chongstitvatana, P. (2004), ‘Chi-Square Matrix: an Approach for

Building-block Identification’, in Proceeding of Asian Computing Science

Conference (2004), pp. 63–77.

Aporntewan, C., and Chongstitvatana, P. (2005), ‘A quantitative approach for validating

the building-block hypothesis’, in IEEE Congress on Evolutionary Computation

(CEC 2005), pp. 1,403–1,409.

Beaudoin, W., Verel, S., Collard, P., and Escazut, C. (2006), ‘Deceptiveness and

neutrality the ND family of fitness landscapesb’, in Proceeding of Genetic and

Evolutionary Computation Conference 2006 (GECCO-2006), pp. 507–514.

Coffin, D.J., and Smith, R.E. (2008), ‘Linkage Learning in Estimation of Distribution

Algorithms’, in Linkage in Evolutionary Computation, eds. Y.P. Chen and M.-

H. Lim, Springer.

Chen, Y.-P., and Goldberg, D.E. (2002), ‘Introducing start expression genes to the

linkage learning genetic algorithm’, in Proceedings of the Seventh International

Conference on Parallel Problem Solving from Nature (PPSN VII), pp. 351–360.

Chen, Y.-P. (2006), Extending the Scalability of Linkage Learning Genetic Algorithms,

Springer.

Chen, Y.-P., Yu, T.-L., Sastry, K., and Goldberg, D. E. (2007), ‘A survey of linkage

learning techniques in genetic and evolutionary algorithms’, Univ. Illinois,

Urbana, IL, Tech. Rep. TR-2007014.

Chen, Y.P., and Lim, M.-H. (2008), Linkage in Evolutionary Computation, Springer.

Cheung, T., Cheung, N., Tobar, C. M. T., Caram, R., and Garcia, A. (2011),

‘Application of a Genetic Algorithm to Optimize Purification in the Zone

Refining Process’, Materials and Manufacturing Processes, 26, 493–500.

Collard, P., Gaspar, A., Clergue, M., and Escazut, C. (1998), ‘Fitness distance

correlation as statistical measurement of genetic algorithms difficulty, revisited’,

in Proceedings of the European Conference on Aritificial Intelligence 1998, pp.

650–654.

Eiben, A.E., Raué, P-E., and Ruttkay, Zs. (1994),‘Genetic algorithms with multi-parent

recombination’, in Proceedings of the International Conference on Evolutionary

Computation 1994, pp. 78–87.

Eiben, A.E. (2000), ‘Multiparent recombination’, in Evolutionary Computation 1: Basic

Algorithms and Operators, eds. T. Baeck and D.B. Fogel and Z. Michalewicz,

UK: Institute of Physics Publishing.

Eiben, A.E. (2002), ‘Multiparent Recombination in evolutionary computing’, in

Advances in Evolutionary Computing, eds. A. Ghosh and S. Tsutsui, Springer.

Eiben, A.E., and Smit, S.K. (2011), ‘Parameter Tuning for Configuring and Analyzing

Evolutionary Algorithms’, Swarm and Evolutionary Computation, 1, pp. 19–31.

Kargupta, H. (1996), ‘The Gene Expression Messy Genetic Algorithm’, in Proceedings

of IEEE International Conference on Evolutionary Computation 1996, pp. 814–

819.

Finger, M., Stutzle, T., and Lourenco, H. (2002), ‘Exploiting fitness distance correlation

of set covering problems’, in Proceedings of the Application of Evolutionary

Computing on EvoWorkshops, pp.61–67.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization & Machine

Learning, Boston, MA: Addison-Wesley Longman Publishing.

Goldberg, D.E., Korb, B., and Deb, K. (1989), ‘Messy Genetic Algorithms: Motivation,

Analysis, and First Results’, Complex Systems, 3, 493–530.

Goldberg, D.E., Deb, K., Kargupta, H., and Harik, G. (1993), ‘Rapid, Accurate

Optimization of Difficult Problems Using Fast Messy Genetic Algorithms’, in

Proceedings of the International Conference on Genetic Algorithms 1993, pp.

56–64.

Goldberg, D.E. and Sastry, K. (2010), Genetic Algorithms: The Design of Innovation,

Berlin, Germany: Springer.

Howard, B., and Sheppard, J.W. (2004), ‘The Royal Road Not Taken: A Re-

examination of the Reasons for GA Failure on R1’, in Proceeding of Genetic

and Evolutionary Computation Conference 2004 (GECCO-2004), pp. 1,208–

1,219.

Larrañaga, P., and Lozano, J. A. (2001), Estimation of Distribution Algorithms: A New

Tool for Evolutionary Computation, Boston, MA: Kluwer Academic Publishers.

Levenick, J. R. (1995), ‘Metabits: Generic endogenous crossover control’, in

Proceedings of the Sixth International Conference on Genetic Algorithms

(ICGA-95), pp. 88–95.

Lobo, F.G., Lima, C.F., and Michalewicz, Z. (2007), Parameter Setting in Evolutionary

Algorithms, Berlin, Germany: Springer.

Ozcan, T. and Esnaf, S. (2013), ‘A Discrete Constrained Optimization Using Genetic

Algorithms for A Bookstore Layout’, International Journal of Computational

Intelligence Systems, 6, 261–278.

Pelikan, M. (2005), Hierarchical Bayesian Optimization Algorithm: Toward a New

Generation of Evolutionary Algorithms, Berlin, Germany: Springer.

Pelikan, M., Goldberg, D.E., and Lobo, F.G. (2002), ‘A Survey of Optimization by

Building and Using Probabilistic Models’, Computational Optimization and

Applications, 21, 5–20.

Pelikan, M., Sastry, K., and Cantú-Paz, E. (2006), Scalable Optimization via

Probabilistic Modeling, Berlin, Germany: Springer.

Sangkavichitra, C., and Chongstitvatana, P. (2010), ‘Fragment as a Small Evidence of

the Building Blocks Existence’, in Exploitation of Linkage Learning in

Evolutionary Algorithms, ed. Y.P. Chen, : New York: Springer, pp. 25–44.

Schaefer, R. (2007), Foundations of Global Genetic Optimization, Springer.

Smith, J., and Fogarty, T. C. (1995), ‘An adaptive poly-parental recombination

strategy’, in Proceedings of AISB-95 Workshop on Evolutionary computing, pp.

48–61.

Smit, S.K., and Eiben, A.E. (2010), ‘Parameter Tuning of Evolutionary Algorithms:

Generalist vs. Specialist’, Applications of Evolutionary Computation, eds. Di

Chio C. et al., Springer.

Sivanandam, S.N., and Deepa, S. N. (2008), Introduction to Genetic Algorithms,

Springer.

Syswerda, G. (1993), ‘Simulated crossover in genetic algorithms’, in Foundations of

Genetic Algorithms 2, ed. L. Darrell Whitley, California: Morgan Kaufmann, pp.

239–255.

Ting, C.K., and Chen, C.C. (2007), ‘The Effects of Supermajority on Multi-Parent

Crossover’, in IEEE Congress on Evolutionary Computation (CEC 2007), pp.

4,524–4,530.

Toussaint, M. (2003), ‘The structure of evolutionary exploration: On crossover,

buildings blocks, and Estimation-Of-Distribution Algorithms’, in Proceeding of

Genetic and Evolutionary Computation Conference 2003 (GECCO-2003), pp.

1444–1456.

Wanga, K. (2009), ‘Application of genetic algorithms to robot kinematics calibration’,

International Journal of Systems Science, 40, 147–153.

Yu, T.-L., and Goldberg, D. E. (2006). ‘Conquering hierarchical difficulty by explicit

chunking: Substructural chromosome compression’. In Proceedings of the

Genetic and Evolutionary Computation Conference 2006 (GECCO-2006), pp.

1385–1392.

Yu, T.-L., Goldberg, D.E., Sastry, K., Lima, C.F., and Pelikan, M. (2009), ‘Dependency

structure matrix, genetic algorithms, and effective recombination’, Evolutionary

Computation, 17, 595–626.

Yu, X., and Gen, M. (2010), Introduction to Evolutionary Algorithms, Berlin, Germany:

Springer.

Table 1. Experimental parameter settings and results.

Table 2. Benchmark parameter settings.

Table 3. Benchmark results.

Figure 1. An example of possible patterns of BBs in a chromosome (A = Allele, C =

Chromosome, B = Building Block).

Figure 2. An example of BBs in a schema (B = Building Block).

Figure 3. Building Block identification method.

Figure 4. Pseudocode for the BBIC algorithm.

Figure 5. Pseudocode for Building Block identification.

Figure 6. Pseudocode for Building Block composition.

Figure 7. Building Block identification and composition methods.

Figure 8. Examples of BB classification.

Figure 9. The sGA results for the Royal Road 64-bit problem: (a)(b) the number of BBs

in each generation and (c)(d) the number of ideal BBs (Pure BBs) in each generation.

Figure 10. The BBIC algorithm results for the Royal Road 64-bit problem: (a)(b) the

number of BBs in each generation, (c)(d) the number of ideal BBs (Pure BBs) in each

generation.

Figure 11. The sGA results for the Trap-5 60-bit problem: (a)(b) the number of BBs in

each generation and (c)(d) the number of ideal BBs (Pure BBs) in each generation.

Figure 12. The BBIC algorithm results for the Trap-5 60-bit problem: (a)(b) the number

of BBs in each generation, (c)(d) the number of ideal BBs (Pure BBs) in each

generation.

Figure 13 The BBIC algorithm results for the Royal Road 64-bit problem: (a)(b) the

average size of the BBs in each generation and (c)(d) the number of BBs in each

generation. Note: CB denotes the average common Building Block size, DB denotes the

average different Building Block size, #CB denotes the number of common BBs and

#DB denotes the number of different BBs.

Figure 14 The BBIC algorithm results for the Trap-5 60-bit problem: (a)(b) the average

size of the BBs in each generation and (c)(d) the number of BBs in each generation.

Note: CB denotes the average common Building Block size, DB denotes the average

different Building Block size, #CB denotes the number of common BBs and #DB

denotes the number of different BBs.

Figure 15. Characteristics of the benchmark problems.

Chalermsub Sangkavichitr earned B.Eng. in Electrical Engineering from Kasetsart

University, Thailand in 2000 and M.Sc. in Computer Science from Chulalongkorn

University, Thailand in 2003. Presently, he is a Ph.D. candidate in the department of

computer engineering, Chulalongkorn University.

Prabhas Chongstitvatana earned B.Eng. in Electrical Engineering from Kasetsart

University, Thailand in 1980 and Ph.D. from the department of artificial intelligence,

Edinburgh University, U.K. in 1992. Presently, he is a professor in the department of

computer engineering, Chulalongkorn University. His research included robotics,

evolutionary computation and computer architecture. The current work involves

bioinformatics and grid computing. He is actively promote the collaboration to create

Thai national grid for scientific computing. He is the member of Thailand Engineering

Institute, Thai Academy of Science and Technology, Thai Robotics Society, Thai

Embedded System Association, ECTI Association of Thailand and IEEE Robotics and

Automation Society.

