

Far East Journal of Mathematical Sciences (FJMS)
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: August 2015
http://dx.doi.org/10.17654/FJMSOct2015_347_364
Volume 98, Number 3, 2015, Pages 347-364 ISSN: 0972-0871

Received: April 29, 2015; Revised: June 29, 2015; Accepted: July 6, 2015
2010 Mathematics Subject Classification: 68-XX.
Keywords and phrases: individual identification, admixture analysis, expectation
maximization, multithreading processor.

 ∗Corresponding author
Communicated by K. K. Azad

CALCULATION OF INDIVIDUAL STRATIFICATION
BY MULTICORE PROCESSORS

A. Burutarchanai∗ and P. Chongstitvatana

Department of Computer Engineering
Chulalongkorn University
Bangkok, 10330, Thailand
e-mail: alongkot.bu@gmail.com

prabhas.c@chula.ac.th

Abstract

This work proposed a parallel paradigm to speedup the calculation for
the analysis of individual admixture for individual identification by
genetic data. The calculation is developed from the Frappe program.
The calculation method is based on a likelihood calculation, which
requires a large number of iterations to obtain the solution. The
likelihood calculation is performed using expectation maximization
(EM). The approach is developed to utilize the calculation power on
parallel machines. Multicore processors are suitable because they are
widely available with reasonable cost. Our software can achieve
speedup of the calculation 3-fold with 4-core processors. The program
was implemented with a 64-bit multicore processor to improve the
performance on large datasets. The algorithm was adapted to the
multiprocessor architecture. The program also has a milestone feature
allowing it to re-execute from the previous stop point which is very
important for a long running job.

A. Burutarchanai and P. Chongstitvatana 348

1. Introduction

The analysis of admixture is used to study the stratification of
populations. It is useful for genetic association studies [1] and admixture
mapping [2, 3]. The calculation can be applied in epidemiology genetics
[3, 4]. The analysis requires genetic data in the format of single nucleotide
polymorphisms (SNPs) and the number of ancestral groups. The result is an
inheritance ratio from each ancestral group that transferred to the individual.

Admixture analysis estimates ancestry based on a maximum likelihood
relation. There are several software programs that can perform such
calculations. In 2003, STRUCTURE was proposed by Falush et al. [5]. The
calculation model was based on the Markov chain. The proposed model
applied biological knowledge of linkage disequilibrium and allele frequency
to the calculation. STRUCTURE provides the result of mixing ratios at a
group level, not an individual level.

Pfaff et al. [6] proposed a calculation method based on the ancestry
informative marker (AIM) information. AIM uses a particular DNA sequence
and its location. To avoid the problem of lacking historical data, Chikhi et al.
[7] proposed a calculation model that used a genetic relationship and
Bayesian relationship. The proposed model is very useful for two groups of
ancestry and with the knowledge of the time of mixing. Tang et al. [8]
applied a combination relationship without a mixing generation constraint to
generalize the model. Tang et al. [8] proposed a calculation method to solve
the proposed calculation model by expectation maximization (EM). The
calculation is guaranteed to converge, although it may converge to a local
maximum [9]. Alexander et al. [10] claimed that the Newton-Raphson
calculation is better than EM. They proposed a block relaxation method that
was a quasi-Newton method, and his calculation used a conjugate gradient,
which reduces the computing cost of the Jacobian matrix. Most of the
proposed methods work with small sizes of genetic data.

2. Methods

This section explains the relationship of the genetic data in SNPs format

Calculation of Individual Stratification by Multicore Processors 349

to the calculation and then proposes the new approach. The original
calculation of admixture was proposed by Tang et al. using EM. The new
approach was adapted from Alexander’s method by making it more specific
to the input data type. Alexander et al. proposed a quasi-Newton method to
solve the equation. However, this work uses an EM method instead of a
quasi-Newton method because the EM method guarantees convergence. The
original calculation is described in the next section.

2.1. The original method

SNP data represents a difference in a single DNA building block in the
living organism. The SNPs data is encoded by values of 0, 1 and 2. The value
of SNPs data represents as 2 for homozygosity wild type which is major
allele for both traits, 1 for heterozygosity wild type which is one trait major
allele and one minor allele and 0 for homozygosity variant which is minor
allele for both traits. The likelihood calculation is developed from mixture
ratio. The mixing ratio drives from the calculation of the probability marker
value, to be major or minor allele, of each allele of a selected locus of each
individual in the hybrid population from their SNPs ancestry population. The
calculation is a linear combination of each ancestry population as shown in
Table 1.

Table 1. The probability of allele inheritance of a selected trait from the
ancestry groups I and II. The table on the left hand side shows the ratio and
the allele frequency of the groups I and II that transfer to their children on the
right hand table. The major allele of A is the sum of all the probabilities of
the major allele to be a probability value of the major allele, vice versa for
the probability of the minor allele

Ancestral I II Hybrid P × Q
Ancestral ratio 0.9 0.1 Allele A I 0.63

Major allele (A) 0.7 0.5 II 0.05
Minor allele (a) 0.3 0.5 Allele a I 0.27

 II 0.05

Table 1 shows an example of the linear combination property of genetic
transfer from generation to generation. The probability of the selected trait

A. Burutarchanai and P. Chongstitvatana 350

has potential to be major allele at 68%, but each locus composes of two traits.
The hybrid population genetic G composes of M markers from every I
individual, each marker has two traits, the genetic value is referred as .img

The img is calculated by the sum of product of the ratio of each population

group and their genetic value as (1) for major allele and (2) for minor allele:

() (),, kmikKim pqQPalleleMajorgP ×Σ=|= (1)

() ().1, kmikKim pqQPalleleMinorgP −×Σ=|= (2)

img : represents the SNP value of the mth marker belonging to the ith

individual.

kmp : represents major allele frequency of the mth marker of the kth

ancestor. The minor allele frequency can be inferred from .1 kmp−

ikq : represents the mixing ratio of the kth groups of ancestral in the ith

individual.

The img for value of 2, each trait is inherited from major allele. The

probability is calculated by ()[] .2
kmikK pq ×Σ For img value 1, one trait is

inherited from major allele and one from minor allele, the probability is
()[] ()[].1 kmikKkmikK pqpq −×Σ××Σ The img for value of 0, each trait is

inherited from minor allele, the probability is calculated by [×Σ ikK q

()] .1 2
kmp−

The admixture calculation was a method to find a solution of ancestor in
the left hand table from the mixed data. This is called likelihood calculation.
The likelihood calculation is a reverse calculation of the probability
calculation as the mixture calculation. The calculation maximizes the
likelihood value of ancestry allele frequency, P, and ancestry admix ratio, Q,
from the hybrid genetic value, G.

The likelihood relation is proposed as (3). The input is genetic data, G, in
SNP format. The relation is developed from conditional product of every trait

Calculation of Individual Stratification by Multicore Processors 351

of every loci of marker and every individual

()

()

() ()()

()()

∏∏

∏

∏

∏

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=−×

=−××

=×

=|
I M

im
K

kmik

im
K

kmikkmik

im
K

kmik

gpq

gpqpq

gpq

GQPL

.0,1

,1,1

,2,

,

2

2

 (3)

Equation (3) can be transformed into (4). The conditional product can be
changed into power form in (4):

() () ()()()∏ ∏ ∏ −−××=|
I M K

g
kmik

g
kmik imim pqpqGQPL .1, 2 (4)

There are several approaches of the likelihood relation as above. This
work proposed an approach which used expectation maximization (EM). The
EM calculates the likelihood relation by taking log of the likelihood, call log-
likelihood. The log-likelihood is addressed as (5):

() {() ()kmikKimMI pqgQPL ×ΣΣΣ= log,

() ()}.1log2 kmikKim pqg −×Σ−+ (5)

The data for this calculation are genetic values with the size of I
individuals × M markers in SNP format. The solutions of admixture
calculation are the parameters of the likelihood that maximize the likelihood
value with respect to the current genetic data.

The EM method decomposes the likelihood calculation into three steps,
the initialization step with bias, the expectation step and the maximization
step. The initialization step is biased to perturb the search direction. Based on
the experiment, this bias is important for the solution to converge. The EM
method repeats the steps of maximization and expectation until the solution
is converged. The maximization step computes likelihood values from the
parameter values. The expectation step re-estimates the parameter values
from the new likelihood values from the maximization step. The

A. Burutarchanai and P. Chongstitvatana 352

maximization step computes equations (6)-(7) and the expectation step
computes equation (8):

() () ()

() ,
1

12
11

12
11

−
==

−
==

ΣΣ

=ΣΣ
= n

imaka
I
i

n
imakimaa

I
in

mlk E

ElG
p (6)

()
()

,2

12
11

M
E

q
n

imaka
M
mn

ik

−
== ΣΣ

= (7)

()
() ()

() () .
1

1
n

ik
n

mlk
K
k

n
ik

n
mlkn

imak qp

qp
E

=

+

Σ
= (8)

The calculation of maximization, (6) and (7) can be performed separately
because the inputs are independent. The calculation reads the genetic value
and E and computes the update values of the ancestry allele frequency, p, and
the individual admixture, q. The stopping criterion is satisfied when the
likelihood values become stable (9):

 () () .1 ε<−− nLnL (9)

2.2. The new method

The calculation approach is adapted to support a multiple calculation
unit. There are two considerations in proposing a new method. The first is the
technological aspect. As there are many available technologies to speedup a
computation, the choice of technology is explained. The second
consideration is the mathematic calculation that utilizes a multiple
calculation unit. These two considerations are detailed in the next subsection.

2.2.1. Multiprocessor technology

There are several technologies to speedup a computation such as using
Graphic Processing Units, using many machines in cloud computing or using
the multithreading available in modern computer systems. Each technology
has its own merit. The multithreading technology is chosen because it is
available at low cost to the researchers and there is good software
development support. The Microsoft dot Net 4.0 framework supports the use

Calculation of Individual Stratification by Multicore Processors 353

of multicore processors. The framework provides a method of parallel-for to
implement a parallel version of a for-loop. The parallel-for construct
distributes multiple tasks of calculation to many individual cores. The
calculation of equations (5)-(8) consists of a nested for-loop, and therefore it
fits this framework. The parallel-for was used in the outer for-loop. The
compiler of the dot Net framework automatically assigns each inner for-loop
to each calculation unit. This mechanism can gain speed by using many cores
at very low overhead. The implemented software runs on a 64-bit Microsoft
operation system version for extended use of large memory.

To achieve good speedup on multiple processors, the pattern of access to
the memory must be considered. The aim is to reduce the amount of data
exchange between many computing units. There are several access patterns:
row-wise, column-wise and block-wise. The row-wise pattern partitions the
task of calculation into row stripes. Each row of data is assigned to each
computing unit, and vice versa, the column-wise pattern partitions the task
into column stripes. The block-wise pattern partitions a task into several
small blocks and assigns each block to each computing unit. In considering
the size of each partition (the amount of work to be done), the calculation
time and communication time must be balanced. If a sub-task is too small,
then the amount of communication between tasks will be increased because
there will be a large number of sub-tasks. Furthermore, when using a shared
value between several computing units, the concurrent update to shared
values must be handled appropriately to reduce the amount of conflict access
to the memory and to ensure the proper update sequence. This conflict can
avoid by adjusting the calculation as below.

2.2.2. Parallel calculation

The value of likelihood in (5) is a major cause of conflicting access to the
memory because it includes a variable shared between many threads of
calculation. To reduce this conflict, the shared variable is replaced by an
array of variables, each owned by an individual computing unit. Equation
(10) reflects this change. The likelihood variable (L) is divided amongst i
computing threads. The row-wise pattern was chosen because of the nature of

A. Burutarchanai and P. Chongstitvatana 354

genetic data. The number of markers is much larger than the number of
individuals. The calculation is performed simultaneously on every row. The
likelihood value was changed from a single variable to an array of values
individually updated by each computing unit:

() {() ()kmikKimM pqgiQPL ×ΣΣ= log,,

() ()}.1log2 kmikKim pqg −×Σ−+ (10)

Each ith row of calculation is assigned to each calculation thread. The
stopping criterion must be extended to (11):

 () ()[] .,1, ε′<−− inLinLVi (11)

The maximization step in (6) and (7) can be simultaneously calculated in
one parallel-for loop. The row-wise pattern was applied. The calculation
time complexity is (),MO which means that the number of markers

determines the calculation time. Using the method of separately updating the
values of P and Q, the calculation time complexity will become to
(),IMO + where M is the number of markers and I is the number of

individuals. Similarly, the expectation step was implemented using a row-
wise pattern.

Here is the summary of the computation of the likelihood value. The
calculation is performed by three independent loops: initialization,
maximization and expectation. Maximization and expectation are executed
concurrently until meeting the stopping criterion (11).

Initialization. This step was run only once at the start to initialize the
value of imakE of (6) and (7). The random values have bias and the sum of

each vector imaE must be exactly 1.

The following steps are repeated until the likelihood values are not
significantly different from the previous iteration.

Maximization. Calculate (6) to maximize the likelihood value by P and
(7) to maximize the likelihood value by Q. The calculations can be

Calculation of Individual Stratification by Multicore Processors 355

simultaneously executed because there is no dependency of the inputs of the
calculation. The inputs are the ancestry allele frequency and the ancestry
admix ratio.

Expectation. Calculate the imakE of the maximized P and Q. The

likelihood value (8) can be simultaneously calculated in this step. The last
column of the likelihood value is used to test the stopping criterion.

Most of the calculation steps are performed on the row-wise pattern. This
pattern reduces the number of memory accesses from every calculation unit.
For example, in the expectation step, the Q value of each individual was
accessed only one time for each row with the row-wise pattern. If the block-
wise pattern was used, then there would be a very large number of memory
accesses for Q by M times, and for P by I times. Comparatively, in the
column-wise pattern, P was read only one time and Q by I times. Finally, the
row-wise pattern reads Q one time and reads P by M times. Because the
genetic data has a much larger number of columns than the number of
individuals, the row-wise pattern reduces the overhead of memory access.

3. Results

The purpose of this work is to speedup the calculation of large data by
optimizing the performance of multicore calculation units. The bovine
dataset from Bovine HapMap Consortium [12] was chosen to validate the
proposed method. This dataset consists of 44,706 markers from 1,121
individuals. The test was run on input ranging from 3 groups of ancestral
through 30 groups of ancestral. The test was performed using an Intel Xeon
E5520 with 24 GB of main memory running on 64-bit Window 7.

The result of EM calculation provides three types of data. The first type
is the ancestral admixture ratio of each individual. The second type is the
ancestral allele frequency from each group in each locus. The last type is
latent variable in each individual allele copy. This information can be used to
infer the source of the allele copy. The Newton-Raphson method cannot
provide this information. The EM method is robust because it can guarantee

A. Burutarchanai and P. Chongstitvatana 356

convergence even when the starting point is not close to the solution. Figure
1 shows the speedup of the proposed method on a 4-core processor versus the
original Frappe on the same processor.

Figure 1. Comparing the calculation speed of the original Frappe and the
proposed method on various sizes of the ancestry group. The vertical axis is
the execution time, in second, until the algorithm terminates. The horizontal
axis is the number of groups of ancestry k. The results show that k has a huge
effect on the speed of calculation. The graph shows steeper slopes at some k,
such as at 7=k and ,15=k in the original method, which may be caused
by the result of memory paging. The Microsoft dot Net seems to make a
good effort at memory management that makes the graph smoother between
each ancestry group in parallel Frappe.

The likelihood value in Figure 2 represents the convergence of the value
according to the theory of EM. Figure 3 shows the admix ratio of the original
method on the upper panel and the proposed method on the lower panel. The
results show little difference between the original version and the proposed
version. The existing difference came from the difference of the initial point.
However, the quality of the overall admix ratio is acceptable.

Calculation of Individual Stratification by Multicore Processors 357

Figure 2. The convergence of the likelihood value of the proposed method.
The vertical axis shows the likelihood value of each individual and the
horizontal axis shows the iteration number. This graph is obtained from the
Bovine dataset which consists of 44707 SNPs, 1121 individual and 7
ancestry groups. The convergence was obtained at approximately 200
iterations.

A. Burutarchanai and P. Chongstitvatana 358

Figure 3. Comparing the results of the original Frappe and the proposed
method. Two graphs show the admix ratio sampled from the same two
hundred rows of individuals.

4. Conclusions

The adjustment of mathematic calculation can significantly improve the
performance in a multi-processor machine. This work provides an adjustment
of calculation method that best fits with the genetic data in SNPs format. The
value of genetic data can directly be used in (5) instead of (3). The result
shows the calculation speedup of the proposed method by Microsoft dot Net
4.0.

There are various types of parallel processing such as using Graphic

Calculation of Individual Stratification by Multicore Processors 359

Processing Units, a cluster computing platform or the multithread method.
An advantage of multicore processors is the power efficiency per
computation. Multicore processors also have low communication time
between multiple processes compared to cluster computing which uses a
computer network to communicate across multiple machines. These
advantages are especially suitable for the problem of likelihood calculation.
Graphic Processing Units are a popular choice recently due to their power
efficiency per computation. However, gaining speedup from these platforms
requires hard work. The tools for GPU programming are difficult to
generalize across different platforms. There are various types of parallel
programming tools such as OpenMP, CUDA, Stream and OpenCL [13-15].
These tools require programmers to carefully balance computation load
across multiple processors. These tools are platform dependent to some
extent; for example, Nvidia GPU uses CUDA [13] and ATI GPU uses Stream
[14]. Currently, Amazon Web Services [16] provides easy to use, on demand,
self-configured machines allowing users to assemble a large system for
computation intensive tasks easily. The proposed method can be used in such
systems.

The proposed method uses multiple cores to execute the likelihood
calculation in parallel. The high performance is achieved by carefully
considering the memory access pattern to avoid memory access conflict
between multiple concurrent calculations. The choice of software also
supports the improvement of performance because the load balancing is
performed automatically by the compiler. The parallel-for construct in the
programming language simplifies the programming task.

The experiment on large data shows that the proposed method achieves
good speedup without sacrificing the accuracy of the results. The reported
results have not been compared to the results of the ADMIXTURE software
proposed by Alexander et al. because his software runs on the different
platforms than the one used in this work (they run only on Linux and OSX
platforms). However, the block relaxation method does not guarantee
convergence from random initial points so it may not be a worthwhile
comparison.

A. Burutarchanai and P. Chongstitvatana 360

Appendix

Implementation

This section explains how to transform for-loop into a parallel-for
construct. The following part of the code shows the calculation of
maximization and expectation. The software program starts from allocate the
latent variable, E, which consists of I individuals, M markers and K ancestry
groups. This variable is used to represent the inheritance ratio of the mth
marker, ith individual from each ancestry group. The value of E has two
sides, each side represents each trait. E′ represents the other side of a trait.
The calculation of equation (3) is shown in the section below.

 updateQ_Origina1 {
 for every Individuals, i
 for every Ancestry groups, k
 for every Markers, m
 case the last column : qik = (qik + Eimk + E′imk)/ (2 × Marker size)
 case the beginning : qik = Eimk + E′imk
 otherwise : qik += Eimk + E′imk
 }

The code shows that at the beginning of every column, the previous
value must be cleared. The sum is accumulated through the last column. The
last individual admix ratio will be divided by 2 × marker because there are
two sides of trait per one marker. The ancestry allele frequency in equation
(2) is a kind of conditional cumulative sum which is slightly different from
the calculation in equation (3). The ancestry allele frequency, ,kmP is

calculated similar to the allele frequency calculation. kmP represents the

major ancestry allele frequency and kmP′ represents the minor allele

frequency. The code section of the ancestry allele frequency calculation is
shown below.

 updateP_Original {
 Clear value of Pkm and normkm
 for every Markers, m {
 for every Individuals, i
 case Homozygosity wild type
 for every Ancestry groops, k
 pkm += Eimk + E′imk
 normkm += Eimk + E′imk
 case Heterozygosity wild type
 for every Ancestry groups, k
 pkm += Eimk
 p′km += E′imk

Calculation of Individual Stratification by Multicore Processors 361

 normkm += Eimk + E′imk
 case Homozygosity variance
 for every Ancestry groups, k
 p′km += Eimk + E′imk
 normkm += Eimk + E′imk
 }
 normalize the allele frequency of each ancestry group.
 for every markers, m
 for every Ancestry groups, k
 pkm /= normkm
 p′km /= normkm
 }

The code above can be transformed into parallel version as follows.
 calculateQ (i,k,m) {
 case the last column : qik = (qik + Eimk + E′imk)/(2 × Marker size)
 case the beginning : qik = Eimk + E′imk
 otherwise : qik += Eimk + E′imk
 }
 updatePQ_Parallel {
 parallel_for every Markers, m {
 for every Ancestry groups, k
 pkm = .
 p′km = .
 normkm = .
 }
 parallel_for enery Markers, m {
 for every Individuals, i
 case Homozygosity wild type
 for every Ancestry groups, k
 pkm += Eimk + E′imk
 normkm += Eimk + E′imk
 calculateQ (i,k,m)
 case Heterogeneous wild type
 for every Ancestry groups, k
 pkm += Eimk
 p′km += E′imk
 normkm += Eimk + E′imk
 calculateQ (i,k,m)
 case Homozygosity variance
 for every Ancestry groups, k
 p′km += Eimk + E′imk
 normkm += Eimk + E′imk
 calculateQ (i,k,m)
 }
 parallel_for every Markers, m {
 for every Ancestry groups, k
 pkm /= normkm
 p′km /= normkm
 }
 }

The code shows the simultaneous calculation of P and Q in the single
parallel-for which save the calculation time. The implementation in the
expectation step has a major difference from single variable access of
likelihood. The likelihood values are distributed as an array of values to
avoid the bottleneck caused by many calculation threads accessing the same
variable. Although Microsoft dot Net framework provides a method to
support mutual exclusion, it can slow down the execution. The critical
section was used to protect against multiple accesses from more than one

A. Burutarchanai and P. Chongstitvatana 362

calculation unit. The likelihood calculation is embedded in the expectation
step. For the ancestry allele frequency, only the major allele frequency was
stored. The minor allele frequency can be inferred by 1-major allele
frequency. Other values such as homozygosity wild type, heterozygosity
wild type and homozygosity variance can be derived from the allele
frequency. The original code (non-parallel) section is shown below.

 updateEandCalLikelihood_Original {
 for every Individuals, i
 for every Markers, m
 case Homozygosity wild type
 Eimk = qik×pkm
 E′imk = qik×pkm
 likelihood += 2×log(qik×pkm)
 case Heterozygosity wild type
 Eimk = qik×pkm
 E′imk = qik×p′km
 likelihood += log(qik×pkm) + log(qik×p′km)
 case Homogygosity variance
 Eimk = qik×p′km
 E′imk = qik×p′km
 likelihood += 2×log(qik×p′km)
 }

The section of code below shows the application of the parallel-for
construct to the original code. The likelihood value needs a critical section to
protect it from concurrent access.

 updateEandCalLikelihood_CriticalSection {
 parallel_for everylndividual, i {
 for every Markers, m
 case Homozygosity wild type
 Eimk = qik×pkm
 E′imk = qik×pkm
 critical section { likelihood += 2×log(qik×pkm) }
 case Heterozygosity wild type
 Eimk = qik×pkm
 E′imk = qik×p′km
 critical section { likelihood += log(qik×pkm) + log(qik×p′km) }
 case Homozygosity variance
 Eimk = qik×p′km
 E′imk = qik×p′km
 critical section { likelihood += 2×log(qik×p′km) }
 }
 }

Finally, the likelihood value is distributed as an array of values and
hence allows many computation units to access them concurrently.

 updateEandCalLikelihood _parallel{
 parallel_for every Individuals, i {
 for every Markers, m
 case Homozygosity wild type
 Eimk = qik×pkm
 E′imk = qik×pkm
 Likelihoodi += 2×log(qik×pkm)

Calculation of Individual Stratification by Multicore Processors 363

 case Heterozygosity wild type
 Eimk = qik×pkm
 E′imk = qik×p′km
 Likelihoodi += log(qik×pkm) + log(qik×p′km)
 case Homozygosity variance type
 Eimk = qik×p′km
 E′imk = qik×p′km
 Likelikoodi += 2×log(qik×p′km)
 }
 }

Acknowledgment

The authors would like to thank the National Centre of Genetic
Engineering and Biotechnology (BIOTEC), Thailand, for the data used in the
experiments.

References

 [1] J. C. Long, The genetic structure of admixed population, Genetics 127 (1991),
417-428.

 [2] N. Patterson, N. Hattangadi, B. Lane, K. E. Lohmueller, D. A. Hafler, J. R.
Oksenberg, S. L. Hauser, M. W. Smith, S. J. O’Brien, D. Altshuler, M. J. Daly
and D. Reich, Methods for high-density admixture mapping of disease genes, Am.
J. Human Genetics 74 (2004), 979-1000.

 [3] C. L. Hanis, R. Chakraborty, R. E. Ferrell and W. J. Schull, Individual admixture
estimates: disease associations and individual risk of diabetes and gallbladder
disease among Mexican-Americans in Starr County, Texas, Am. J. Phys.
Anthropol. 70(4) (1986), 433-441.

 [4] C. Bonilla, M. D. Shriver, E. J. Parra, A. Jones and J. R. Fernández, Ancestral
proportions and their association with skin pigmentation and bone mineral density
in Puerto Rican women from New York city, Hum. Genet. 115 (2004), 57-68.

 [5] D. Falush, M. Stephens and J. K. Pritchard, Inference of population structure
using multilocus genotype data: linked loci and correlated allele frequencies,
Genetics 164 (2003), 1567-1587.

 [6] C. L. Pfaff, J. Barnholtz-Sloan, J. K. Wagner and J. C. Long, Information on
ancestry from genetic markers, Genetic Epidemiology 26(4) (2003), 305-315.

 [7] L. Chikhi, M. W. Bruford and M. A. Beaumont, Estimation of admixture
proportions: a likelihood-based approach using Markov chain Monte Carlo,
Genetics 158 (2001), 1347-1362.

A. Burutarchanai and P. Chongstitvatana 364

 [8] H. Tang, P. Jie, P. Wang and N. J. Risch, Estimation of individual admixture:
analytical and study design considerations, Genetic Epidemiology 28 (2005),
289-301.

 [9] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, JSTOR Series B 39 (1977), 1-38.

 [10] D. H. Alexander, J. Novembre and K. Lange, Fast model-based estimation of
ancestry in unrelated individuals, Genome Res. 19(9) (2009), 1655-1664.

 [11] Parallel Framework.
http://msdn.microsoft.com/en-us/library/dd460693(v=vs.110).aspx, 2014.

 [12] Bovine HapMap Consortium, R. A. Gibbs, Genome-wide survey of SNP variation
uncovers the genetic structure of cattle breeds, Science 324(5926) (2009),
528-532.

 [13] CUDA: http://developer.nvidia.com/category/zone/cuda-zone, 2014.

 [14] ATI Stream: http://developer.amd.com/archive/gpu/ATIStreamSDKv2.3, 2014.

 [15] OpenCL, 2014, https://www.khronos.org/opencl/.

 [16] Amazon Elastic Compute Cloud, 2014, http://aws.amazon.com/ec2.

 [17] A. Heinecke, M. Klemm and H.-J. Bungartz, From GPGPU to many-core: Nvidia
Fermi and Intel many integrated core architecture, Comput. Sci. Eng. 14 (2012),
78-83.

