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Abstract 

This work proposed a parallel paradigm to speedup the calculation for 
the analysis of individual admixture for individual identification by 
genetic data. The calculation is developed from the Frappe program. 
The calculation method is based on a likelihood calculation, which 
requires a large number of iterations to obtain the solution. The 
likelihood calculation is performed using expectation maximization 
(EM). The approach is developed to utilize the calculation power on 
parallel machines. Multicore processors are suitable because they are 
widely available with reasonable cost. Our software can achieve 
speedup of the calculation 3-fold with 4-core processors. The program 
was implemented with a 64-bit multicore processor to improve the 
performance on large datasets. The algorithm was adapted to the 
multiprocessor architecture. The program also has a milestone feature 
allowing it to re-execute from the previous stop point which is very 
important for a long running job. 
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1. Introduction 

The analysis of admixture is used to study the stratification of 
populations. It is useful for genetic association studies [1] and admixture 
mapping [2, 3]. The calculation can be applied in epidemiology genetics         
[3, 4]. The analysis requires genetic data in the format of single nucleotide 
polymorphisms (SNPs) and the number of ancestral groups. The result is an 
inheritance ratio from each ancestral group that transferred to the individual. 

Admixture analysis estimates ancestry based on a maximum likelihood 
relation. There are several software programs that can perform such 
calculations. In 2003, STRUCTURE was proposed by Falush et al. [5]. The 
calculation model was based on the Markov chain. The proposed model 
applied biological knowledge of linkage disequilibrium and allele frequency 
to the calculation. STRUCTURE provides the result of mixing ratios at a 
group level, not an individual level. 

Pfaff et al. [6] proposed a calculation method based on the ancestry 
informative marker (AIM) information. AIM uses a particular DNA sequence 
and its location. To avoid the problem of lacking historical data, Chikhi et al. 
[7] proposed a calculation model that used a genetic relationship and 
Bayesian relationship. The proposed model is very useful for two groups of 
ancestry and with the knowledge of the time of mixing. Tang et al. [8] 
applied a combination relationship without a mixing generation constraint to 
generalize the model. Tang et al. [8] proposed a calculation method to solve 
the proposed calculation model by expectation maximization (EM). The 
calculation is guaranteed to converge, although it may converge to a local 
maximum [9]. Alexander et al. [10] claimed that the Newton-Raphson 
calculation is better than EM. They proposed a block relaxation method that 
was a quasi-Newton method, and his calculation used a conjugate gradient, 
which reduces the computing cost of the Jacobian matrix. Most of the 
proposed methods work with small sizes of genetic data. 

2. Methods 

This section explains the relationship of the genetic data in SNPs format 
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to the calculation and then proposes the new approach. The original 
calculation of admixture was proposed by Tang et al. using EM. The new 
approach was adapted from Alexander’s method by making it more specific 
to the input data type. Alexander et al. proposed a quasi-Newton method to 
solve the equation. However, this work uses an EM method instead of a 
quasi-Newton method because the EM method guarantees convergence. The 
original calculation is described in the next section. 

2.1. The original method 

SNP data represents a difference in a single DNA building block in the 
living organism. The SNPs data is encoded by values of 0, 1 and 2. The value 
of SNPs data represents as 2 for homozygosity wild type which is major 
allele for both traits, 1 for heterozygosity wild type which is one trait major 
allele and one minor allele and 0 for homozygosity variant which is minor 
allele for both traits. The likelihood calculation is developed from mixture 
ratio. The mixing ratio drives from the calculation of the probability marker 
value, to be major or minor allele, of each allele of a selected locus of each 
individual in the hybrid population from their SNPs ancestry population. The 
calculation is a linear combination of each ancestry population as shown in 
Table 1. 

Table 1. The probability of allele inheritance of a selected trait from the 
ancestry groups I and II. The table on the left hand side shows the ratio and 
the allele frequency of the groups I and II that transfer to their children on the 
right hand table. The major allele of A is the sum of all the probabilities of 
the major allele to be a probability value of the major allele, vice versa for 
the probability of the minor allele 

Ancestral I II  Hybrid P × Q 
Ancestral ratio 0.9 0.1  Allele A I 0.63 

Major allele (A) 0.7 0.5   II 0.05 
Minor allele (a) 0.3 0.5  Allele a I 0.27 

     II 0.05 

Table 1 shows an example of the linear combination property of genetic 
transfer from generation to generation. The probability of the selected trait 
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has potential to be major allele at 68%, but each locus composes of two traits. 
The hybrid population genetic G composes of M markers from every I 
individual, each marker has two traits, the genetic value is referred as .img  

The img  is calculated by the sum of product of the ratio of each population 

group and their genetic value as (1) for major allele and (2) for minor allele: 

( ) ( ),, kmikKim pqQPalleleMajorgP ×Σ=|=  (1) 

( ) ( ).1, kmikKim pqQPalleleMinorgP −×Σ=|=  (2) 

img  : represents the SNP value of the mth marker belonging to the ith 

individual. 

kmp  : represents major allele frequency of the mth marker of the kth 

ancestor. The minor allele frequency can be inferred from .1 kmp−  

ikq  : represents the mixing ratio of the kth groups of ancestral in the ith 

individual. 

The img  for value of 2, each trait is inherited from major allele. The 

probability is calculated by ( )[ ] .2
kmikK pq ×Σ  For img  value 1, one trait is 

inherited from major allele and one from minor allele, the probability is 
( )[ ] ( )[ ].1 kmikKkmikK pqpq −×Σ××Σ  The img  for value of 0, each trait is 

inherited from minor allele, the probability is calculated by [ ×Σ ikK q  

( )] .1 2
kmp−  

The admixture calculation was a method to find a solution of ancestor in 
the left hand table from the mixed data. This is called likelihood calculation. 
The likelihood calculation is a reverse calculation of the probability 
calculation as the mixture calculation. The calculation maximizes the 
likelihood value of ancestry allele frequency, P, and ancestry admix ratio, Q, 
from the hybrid genetic value, G. 

The likelihood relation is proposed as (3). The input is genetic data, G, in 
SNP format. The relation is developed from conditional product of every trait 
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of every loci of marker and every individual 
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Equation (3) can be transformed into (4). The conditional product can be 
changed into power form in (4): 

( ) ( ) ( )( )( )∏ ∏ ∏ −−××=|
I M K

g
kmik

g
kmik imim pqpqGQPL .1, 2  (4) 

There are several approaches of the likelihood relation as above. This 
work proposed an approach which used expectation maximization (EM). The 
EM calculates the likelihood relation by taking log of the likelihood, call log-
likelihood. The log-likelihood is addressed as (5): 

( ) {( ) ( )kmikKimMI pqgQPL ×ΣΣΣ= log,  

( ) ( )}.1log2 kmikKim pqg −×Σ−+  (5) 

The data for this calculation are genetic values with the size of I 
individuals × M markers in SNP format. The solutions of admixture 
calculation are the parameters of the likelihood that maximize the likelihood 
value with respect to the current genetic data. 

The EM method decomposes the likelihood calculation into three steps, 
the initialization step with bias, the expectation step and the maximization 
step. The initialization step is biased to perturb the search direction. Based on 
the experiment, this bias is important for the solution to converge. The EM 
method repeats the steps of maximization and expectation until the solution 
is converged. The maximization step computes likelihood values from the 
parameter values. The expectation step re-estimates the parameter values 
from the new likelihood values from the maximization step. The 
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maximization step computes equations (6)-(7) and the expectation step 
computes equation (8): 
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The calculation of maximization, (6) and (7) can be performed separately 
because the inputs are independent. The calculation reads the genetic value 
and E and computes the update values of the ancestry allele frequency, p, and 
the individual admixture, q. The stopping criterion is satisfied when the 
likelihood values become stable (9): 

 ( ) ( ) .1 ε<−− nLnL  (9) 

2.2. The new method 

The calculation approach is adapted to support a multiple calculation 
unit. There are two considerations in proposing a new method. The first is the 
technological aspect. As there are many available technologies to speedup a 
computation, the choice of technology is explained. The second 
consideration is the mathematic calculation that utilizes a multiple 
calculation unit. These two considerations are detailed in the next subsection. 

2.2.1. Multiprocessor technology 

There are several technologies to speedup a computation such as using 
Graphic Processing Units, using many machines in cloud computing or using 
the multithreading available in modern computer systems. Each technology 
has its own merit. The multithreading technology is chosen because it is 
available at low cost to the researchers and there is good software 
development support. The Microsoft dot Net 4.0 framework supports the use 
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of multicore processors. The framework provides a method of parallel-for to 
implement a parallel version of a for-loop. The parallel-for construct 
distributes multiple tasks of calculation to many individual cores. The 
calculation of equations (5)-(8) consists of a nested for-loop, and therefore it 
fits this framework. The parallel-for was used in the outer for-loop. The 
compiler of the dot Net framework automatically assigns each inner for-loop 
to each calculation unit. This mechanism can gain speed by using many cores 
at very low overhead. The implemented software runs on a 64-bit Microsoft 
operation system version for extended use of large memory. 

To achieve good speedup on multiple processors, the pattern of access to 
the memory must be considered. The aim is to reduce the amount of data 
exchange between many computing units. There are several access patterns: 
row-wise, column-wise and block-wise. The row-wise pattern partitions the 
task of calculation into row stripes. Each row of data is assigned to each 
computing unit, and vice versa, the column-wise pattern partitions the task 
into column stripes. The block-wise pattern partitions a task into several 
small blocks and assigns each block to each computing unit. In considering 
the size of each partition (the amount of work to be done), the calculation 
time and communication time must be balanced. If a sub-task is too small, 
then the amount of communication between tasks will be increased because 
there will be a large number of sub-tasks. Furthermore, when using a shared 
value between several computing units, the concurrent update to shared 
values must be handled appropriately to reduce the amount of conflict access 
to the memory and to ensure the proper update sequence. This conflict can 
avoid by adjusting the calculation as below. 

2.2.2. Parallel calculation 

The value of likelihood in (5) is a major cause of conflicting access to the 
memory because it includes a variable shared between many threads of 
calculation. To reduce this conflict, the shared variable is replaced by an 
array of variables, each owned by an individual computing unit. Equation 
(10) reflects this change. The likelihood variable (L) is divided amongst i 
computing threads. The row-wise pattern was chosen because of the nature of 
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genetic data. The number of markers is much larger than the number of 
individuals. The calculation is performed simultaneously on every row. The 
likelihood value was changed from a single variable to an array of values 
individually updated by each computing unit: 

( ) {( ) ( )kmikKimM pqgiQPL ×ΣΣ= log,,  

( ) ( )}.1log2 kmikKim pqg −×Σ−+  (10) 

Each ith row of calculation is assigned to each calculation thread. The 
stopping criterion must be extended to (11): 

 ( ) ( )[ ] .,1, ε′<−− inLinLVi  (11) 

The maximization step in (6) and (7) can be simultaneously calculated in 
one parallel-for loop. The row-wise pattern was applied. The calculation 
time complexity is ( ),MO  which means that the number of markers 

determines the calculation time. Using the method of separately updating the 
values of P and Q, the calculation time complexity will become to 
( ),IMO +  where M is the number of markers and I is the number of 

individuals. Similarly, the expectation step was implemented using a row-
wise pattern. 

Here is the summary of the computation of the likelihood value. The 
calculation is performed by three independent loops: initialization, 
maximization and expectation. Maximization and expectation are executed 
concurrently until meeting the stopping criterion (11). 

Initialization. This step was run only once at the start to initialize the 
value of imakE  of (6) and (7). The random values have bias and the sum of 

each vector imaE  must be exactly 1. 

The following steps are repeated until the likelihood values are not 
significantly different from the previous iteration. 

Maximization. Calculate (6) to maximize the likelihood value by P and 
(7) to maximize the likelihood value by Q. The calculations can be 
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simultaneously executed because there is no dependency of the inputs of the 
calculation. The inputs are the ancestry allele frequency and the ancestry 
admix ratio. 

Expectation. Calculate the imakE  of the maximized P and Q. The 

likelihood value (8) can be simultaneously calculated in this step. The last 
column of the likelihood value is used to test the stopping criterion. 

Most of the calculation steps are performed on the row-wise pattern. This 
pattern reduces the number of memory accesses from every calculation unit. 
For example, in the expectation step, the Q value of each individual was 
accessed only one time for each row with the row-wise pattern. If the block-
wise pattern was used, then there would be a very large number of memory 
accesses for Q by M times, and for P by I times. Comparatively, in the 
column-wise pattern, P was read only one time and Q by I times. Finally, the 
row-wise pattern reads Q one time and reads P by M times. Because the 
genetic data has a much larger number of columns than the number of 
individuals, the row-wise pattern reduces the overhead of memory access. 

3. Results 

The purpose of this work is to speedup the calculation of large data by 
optimizing the performance of multicore calculation units. The bovine 
dataset from Bovine HapMap Consortium [12] was chosen to validate the 
proposed method. This dataset consists of 44,706 markers from 1,121 
individuals. The test was run on input ranging from 3 groups of ancestral 
through 30 groups of ancestral. The test was performed using an Intel Xeon 
E5520 with 24 GB of main memory running on 64-bit Window 7. 

The result of EM calculation provides three types of data. The first type 
is the ancestral admixture ratio of each individual. The second type is the 
ancestral allele frequency from each group in each locus. The last type is 
latent variable in each individual allele copy. This information can be used to 
infer the source of the allele copy. The Newton-Raphson method cannot 
provide this information. The EM method is robust because it can guarantee 
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convergence even when the starting point is not close to the solution. Figure 
1 shows the speedup of the proposed method on a 4-core processor versus the 
original Frappe on the same processor. 

 

Figure 1. Comparing the calculation speed of the original Frappe and the 
proposed method on various sizes of the ancestry group. The vertical axis is 
the execution time, in second, until the algorithm terminates. The horizontal 
axis is the number of groups of ancestry k. The results show that k has a huge 
effect on the speed of calculation. The graph shows steeper slopes at some k, 
such as at 7=k  and ,15=k  in the original method, which may be caused 
by the result of memory paging. The Microsoft dot Net seems to make a 
good effort at memory management that makes the graph smoother between 
each ancestry group in parallel Frappe. 

The likelihood value in Figure 2 represents the convergence of the value 
according to the theory of EM. Figure 3 shows the admix ratio of the original 
method on the upper panel and the proposed method on the lower panel. The 
results show little difference between the original version and the proposed 
version. The existing difference came from the difference of the initial point. 
However, the quality of the overall admix ratio is acceptable. 
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Figure 2. The convergence of the likelihood value of the proposed method. 
The vertical axis shows the likelihood value of each individual and the 
horizontal axis shows the iteration number. This graph is obtained from the 
Bovine dataset which consists of 44707 SNPs, 1121 individual and 7 
ancestry groups. The convergence was obtained at approximately 200 
iterations. 
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Figure 3. Comparing the results of the original Frappe and the proposed 
method. Two graphs show the admix ratio sampled from the same two 
hundred rows of individuals. 

4. Conclusions 

The adjustment of mathematic calculation can significantly improve the 
performance in a multi-processor machine. This work provides an adjustment 
of calculation method that best fits with the genetic data in SNPs format. The 
value of genetic data can directly be used in (5) instead of (3). The result 
shows the calculation speedup of the proposed method by Microsoft dot Net 
4.0. 

There are various types of parallel processing such as using Graphic 
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Processing Units, a cluster computing platform or the multithread method. 
An advantage of multicore processors is the power efficiency per 
computation. Multicore processors also have low communication time 
between multiple processes compared to cluster computing which uses a 
computer network to communicate across multiple machines. These 
advantages are especially suitable for the problem of likelihood calculation. 
Graphic Processing Units are a popular choice recently due to their power 
efficiency per computation. However, gaining speedup from these platforms 
requires hard work. The tools for GPU programming are difficult to 
generalize across different platforms. There are various types of parallel 
programming tools such as OpenMP, CUDA, Stream and OpenCL [13-15]. 
These tools require programmers to carefully balance computation load 
across multiple processors. These tools are platform dependent to some 
extent; for example, Nvidia GPU uses CUDA [13] and ATI GPU uses Stream 
[14]. Currently, Amazon Web Services [16] provides easy to use, on demand, 
self-configured machines allowing users to assemble a large system for 
computation intensive tasks easily. The proposed method can be used in such 
systems. 

The proposed method uses multiple cores to execute the likelihood 
calculation in parallel. The high performance is achieved by carefully 
considering the memory access pattern to avoid memory access conflict 
between multiple concurrent calculations. The choice of software also 
supports the improvement of performance because the load balancing is 
performed automatically by the compiler. The parallel-for construct in the 
programming language simplifies the programming task. 

The experiment on large data shows that the proposed method achieves 
good speedup without sacrificing the accuracy of the results. The reported 
results have not been compared to the results of the ADMIXTURE software 
proposed by Alexander et al. because his software runs on the different 
platforms than the one used in this work (they run only on Linux and OSX 
platforms). However, the block relaxation method does not guarantee 
convergence from random initial points so it may not be a worthwhile 
comparison. 



A. Burutarchanai and P. Chongstitvatana 360 

Appendix 

Implementation 

This section explains how to transform for-loop into a parallel-for 
construct. The following part of the code shows the calculation of 
maximization and expectation. The software program starts from allocate the 
latent variable, E, which consists of I individuals, M markers and K ancestry 
groups. This variable is used to represent the inheritance ratio of the mth 
marker, ith individual from each ancestry group. The value of E has two 
sides, each side represents each trait. E′ represents the other side of a trait. 
The calculation of equation (3) is shown in the section below. 

 updateQ_Origina1 { 
     for every Individuals, i  
         for every Ancestry groups, k 
             for every Markers, m  
                 case the last column :    qik = (qik + Eimk + E′imk)/ (2 × Marker size)  
                 case the beginning   :    qik =  Eimk + E′imk 
                 otherwise            :    qik +=  Eimk + E′imk 
 } 

The code shows that at the beginning of every column, the previous 
value must be cleared. The sum is accumulated through the last column. The 
last individual admix ratio will be divided by 2 × marker because there are 
two sides of trait per one marker. The ancestry allele frequency in equation 
(2) is a kind of conditional cumulative sum which is slightly different from 
the calculation in equation (3). The ancestry allele frequency, ,kmP  is 

calculated similar to the allele frequency calculation. kmP  represents the 

major ancestry allele frequency and kmP′  represents the minor allele 

frequency. The code section of the ancestry allele frequency calculation is 
shown below. 

 updateP_Original {  
     Clear value of Pkm and normkm  
     for every Markers, m { 
         for every Individuals, i  
             case Homozygosity wild type  
                 for every Ancestry groops, k  
                     pkm +=  Eimk + E′imk  
                     normkm +=  Eimk + E′imk  
             case Heterozygosity wild type  
                 for every Ancestry groups, k  
                     pkm +=  Eimk  
                     p′km += E′imk  
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                     normkm +=  Eimk + E′imk  
             case Homozygosity variance  
                 for every Ancestry groups, k  
                     p′km += Eimk + E′imk                       
                     normkm +=  Eimk + E′imk  
     } 
     normalize the allele frequency of each ancestry group. 
     for every markers, m  
         for every Ancestry groups, k  
             pkm   /= normkm  
             p′km  /= normkm 
 } 

The code above can be transformed into parallel version as follows. 
 calculateQ (i,k,m) {  
          case the last column  :  qik = (qik + Eimk + E′imk)/(2 × Marker size)  
          case the beginning    :  qik =  Eimk + E′imk   
          otherwise             :  qik +=  Eimk + E′imk  
 } 
 updatePQ_Parallel {  
   parallel_for every Markers, m {  
         for every Ancestry groups, k 
             pkm = . 
             p′km = . 
             normkm = .  
   } 
   parallel_for enery Markers, m { 
         for every Individuals, i  
             case Homozygosity wild type  
                 for every Ancestry groups, k 
                     pkm +=  Eimk + E′imk  
                     normkm +=  Eimk + E′imk 
                     calculateQ (i,k,m)  
             case Heterogeneous wild type  
                 for every Ancestry groups, k 
                     pkm +=  Eimk  
                     p′km +=  E′imk  
                     normkm +=  Eimk + E′imk  
                     calculateQ (i,k,m)  
             case Homozygosity variance  
                 for every Ancestry groups, k 
                     p′km += Eimk + E′imk   
                     normkm +=  Eimk + E′imk  
                     calculateQ (i,k,m)  
    } 
    parallel_for every Markers, m { 
        for every Ancestry groups, k 
            pkm   /= normkm  
            p′km  /= normkm 
   } 
 } 

The code shows the simultaneous calculation of P and Q in the single 
parallel-for which save the calculation time. The implementation in the 
expectation step has a major difference from single variable access of 
likelihood. The likelihood values are distributed as an array of values to 
avoid the bottleneck caused by many calculation threads accessing the same 
variable. Although Microsoft dot Net framework provides a method to 
support mutual exclusion, it can slow down the execution. The critical 
section was used to protect against multiple accesses from more than one 
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calculation unit. The likelihood calculation is embedded in the expectation 
step. For the ancestry allele frequency, only the major allele frequency was 
stored. The minor allele frequency can be inferred by 1-major allele 
frequency. Other values such as homozygosity wild type, heterozygosity 
wild type and homozygosity variance can be derived from the allele 
frequency. The original code (non-parallel) section is shown below. 

 updateEandCalLikelihood_Original {  
     for every Individuals, i  
         for every Markers, m  
             case Homozygosity wild type  
                 Eimk = qik×pkm 
                 E′imk = qik×pkm 
                 likelihood += 2×log(qik×pkm)  
             case Heterozygosity wild type  
                 Eimk = qik×pkm 
                 E′imk = qik×p′km 
                 likelihood += log(qik×pkm) + log(qik×p′km) 
             case Homogygosity variance  
                 Eimk = qik×p′km 
                 E′imk = qik×p′km 
                 likelihood += 2×log(qik×p′km) 
 } 

The section of code below shows the application of the parallel-for 
construct to the original code. The likelihood value needs a critical section to 
protect it from concurrent access. 

 updateEandCalLikelihood_CriticalSection {  
     parallel_for everylndividual, i {  
          for every Markers, m  
             case Homozygosity wild type  
                 Eimk = qik×pkm 
                 E′imk = qik×pkm  
                 critical section { likelihood += 2×log(qik×pkm) }  
             case Heterozygosity wild type  
                 Eimk = qik×pkm 
                 E′imk = qik×p′km  
                 critical section { likelihood += log(qik×pkm) + log(qik×p′km) } 
             case Homozygosity variance  
                 Eimk = qik×p′km 
                 E′imk = qik×p′km 
                 critical section { likelihood += 2×log(qik×p′km) } 
     } 
 } 

Finally, the likelihood value is distributed as an array of values and 
hence allows many computation units to access them concurrently. 

 updateEandCalLikelihood _parallel{ 
     parallel_for every Individuals, i {  
          for every Markers, m  
             case Homozygosity wild type  
                 Eimk = qik×pkm 
                 E′imk = qik×pkm  
                 Likelihoodi += 2×log(qik×pkm)  
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             case Heterozygosity wild type  
                 Eimk = qik×pkm 
                 E′imk = qik×p′km  
                 Likelihoodi += log(qik×pkm) + log(qik×p′km) 
             case Homozygosity variance type  
                 Eimk = qik×p′km 
                 E′imk = qik×p′km 
                 Likelikoodi += 2×log(qik×p′km) 
    } 
 } 
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