
S2 version 1: 32-bit Processor

This is a typical simple 32-bit processor. It has three-address instructions and 32 registers. Most

operations are register to register. The ld/st (load/store) instructions are used to move data

between registers and memory. This document presents only S21 assembly language view. It

does not give details about microarchitecture (such as pipeline).

Format

A general format of an instruction (register to register operations) using the convention “op dest

source” is as follow:

op r1 r2 r3 means R[r1] = R[r2] op R[r3]

such as

add r1 r2 r3 means R[r1] = R[r2] + R[r3]

Addressing

To move values between memory and registers, ld/st instructions are used. There are three

addressing mode: absolute, indirect and index. (ld is mem to reg, st is reg to mem).

absolute addressing ld r1 ads R[r1] = M[ads]

indirect addressing ld r1 @d r2 R[r1] = M[d+R[r2]]

index addressing ld r1 +r2 r3 R[r1] = M[R[r2]+R[r3]]

similarly for store instruction

absolute st r1 ads M[ads] = R[r1]

indirect st r1 @d r2 M[d+R[r2]] = R[r1]

index st r1 +r2 r3 M[R[r2]+R[r3]] = R[r1]

Instruction type
arithmetic and logic:

add sub mul div

and or not xor shl shr

eq ne lt le gt ge

control flow:

jmp jt jf jal ret

data:

ld st mv push pop

Instruction meaning
false == 0

true != 0

R[0] always zero

Data
ld r1 ads is R[r1] = M[ads] load absolute

ld r1 @d r2 is R[r1] = M[d+R[r2]] load indirect

ld r1 +r2 r3 is R[r1] = M[R[r2]+R[r3]] load index

st r1 ads is M[ads] = R[r1] store absolute

st r1 @d r2 is M[d+R[r2]] = R[r1] store indirect

st r1 +r2 r3 is M[R[r2]+R[r3]] = R[r1] store index

jmp ads is pc = ads

jt r1 ads is if R[r1] != 0 pc = ads

jf r1 ads is if R[r1] == 0 pc = ads

jal r1 ads is R[r1] = PC; PC = ads jump and link

ret r1 is PC = R[r1] return

mv r1 r2 is R[r1] = R[r2]

mv r1 #n is R[r1] = #n move immediate

Arithmetic
two-complement integer arithmetic

op r1 r2 r3 is R[r1] = R[r2] op R[r3]

op r1 r2 #n is R[r1] = R[r2] op n

add r1 r2 r3 R[r1] = R[r2] + R[r3] add

add r1 r2 #n R[r1] = R[r2] + sign extended n add immediate

...

logic (bitwise)
and r1 r2 r3 R[r1] = R[r2] bitand R[r3] and

and r1 r2 #n R[r1] = R[r2] bitand sign extended n and immediate

...

eq r1 r2 r3 R[r1] = R[r2] == R[r3] equal

eq r1 r2 #n R[r1] = R[r2] == #n equal immediate

...

shl r1 r2 r3 R[r1] = R[r2] << R[r3] shift left

shl r1 r2 #n R[r1] = R[r2] << #n shift left immediate

. . .

not r1 r2 R[r1] = ~R[r2] logical not

trap n special instruction, n is in r1-field.

trap 0 stop simulation

trap 1 print integer in R[30]

trap 2 print character in R[30]

Stack operation
To facilitate passing the parameters to a subroutine and also to save state (link register) for

recursive call, two stack operations are defined: push, pop. r1 is used as a stack pointer.

push r1 r2 R[r1]++; M[R[r1]]=R[r2]

pop r1 r2 R[r2] = M[R[r1]]; R[r1]--

Interrupt

There is one level hardware interrupt and one software interrupt. An internal register RetAds

stores the PC when an interrupt occurs. It is used for returning from an Interrupt Service

Routine. The interrupt vector is designated at the location 1000.

int 0 RetAds = PC, PC = M[1000], software interrupt

reti PC = RetAds

There are four instructions to support task switching using interrupt. Savr/resr are used to

support writing a task-switcher. They are not suitable for single cycle processors.

savr sp push r0..r15 to stack

resr sp pop stack to r15..r0

savt r1 R[r1] = RetAds

rest r1 RetAds = R[r1]

Instruction format
L-format op:5 r1:5 ads:22

D-format op:5 r1:5 r2:5 disp:17

X-format op:5 r1:5 r2:5 r3:5 xop:12

(r1 dest, r2,r3 source, ads and disp are sign extended)

Instructions are fixed length at 32 bits. There are 32 registers with R[0] always zero. The

address space is 32-bit (4G) with 22-bit direct addressable (4M). The addressing unit is word

(32-bit).

Opcode encoding
opcode op format

0 nop L

1 ld r1 ads L (ads 22 bits)

2 ld r1 @d r2 D (d 17 bits)

3 st r1 ads L

4 st r1 @d r2 D

5 mv r1 #n L (n 22 bits)

6 jmp ads L (ads 22 bits)

7 jal r1 ads L (ads 22 bits)

8 jt r1 ads L

9 jf r1 ads L

10 add r1 r2 #n D (n 17 bits)

11 sub r1 r2 #n D

12 mul r1 r2 #n D

13 div r1 r2 #n D

14 and r1 r2 #n D

15 or r1 r2 #n D

16 xor r1 r2 #n D

17 eq r1 r2 #n D

18 ne r1 r2 #n D

19 lt r1 r2 #n D

20 le r1 r2 #n D

21 gt r1 r2 #n D

22 ge r1 r2 #n D

23 shl r1 r2 #n D

24 shr r1 r2 #n D

25..30 undefined

31 extended op X

xop

0 add r1 r2 r3 X

1 sub r1 r2 r3 X

2 mul r1 r2 r3 X

3 div r1 r2 r3 X

4 and r1 r2 r3 X

5 or r1 r2 r3 X

6 xor r1 r2 r3 X

7 eq r1 r2 r3 X

8 ne r1 r2 r3 X

9 lt r1 r2 r3 X

10 le r1 r2 r3 X

11 gt r1 r2 r3 X

12 ge r1 r2 r3 X

13 shl r1 r2 r3 X

14 shr r1 r2 r3 X

15 mv r1 r2 X

16 ld r1 +r2 r3 X

17 st r1 +r2 r3 X

18 ret r1 X

19 trap n X use r1 as trap code (n 0..31)

20 push r1 r2 X use r1 as stack pointer

21 pop r1 r2 X use r1 as stack pointer

22 not r1 r2 X

23 int 0 X

24 reti X no argument

25 savr r1 X use r1 as sp

26 resr r1 X use r1 as sp

27 savt r1 X

28 rest r1 X

29..4095 undefined

Historical fact
S21 is an extension of S2 (S2, 2007), as a result of my experience in teaching assembly

language. S2 has been used for teaching since 2001. S2 itself is an "extended" version of S1 (a

16-bit processor) which was created in 1997.

To improve understandability of S2 assembly language, flags are not used. Instead, new logical

instructions that have 3-address are introduced. The result (true/false) is stored in a register.

Two new conditional jumps are introduced "jt", "jf" to make use of the result from logical

instructions. To avoid the confusion between absolute addressing and moving between registers,

a new instruction "mv" is introduced. (and "ld r1 #n" is eliminated.)

The opcode format and assembly language format for S2 follow the tradition “dest = source1 op

source2” from well-known historical computers: PDP, VAX and IBM S360.

To complement the value of a register, xor with 0xFFFFFFFF (-1) can be used.

xor r1 r2 #-1 r1 = complement r2

last update 2 Apr 2016

