
S3.0 : A multicore 32-bit Processor

S3.0 is a multicore version of S2.1 simple processor. This is a typical simple 32-bit processor. It

has three-address instructions and 32 registers. Most operations are register to register. The

ld/st (load/store) instructions are used to move data between registers and memory. This

document presents only S30 assembly language view. It does not give details about

microarchitecture (such as pipeline).

Format
A general format of an instruction (register to register operations) using the convention “op dest

source” is as follow:

op r1 r2 r3 means R[r1] = R[r2] op R[r3]

such as

add r1 r2 r3 means R[r1] = R[r2] + R[r3]

Addressing

To move values between memory and registers, ld/st instructions are used. There are three

addressing mode: absolute, indirect and index. (ld is mem to reg, st is reg to mem).

absolute addressing ld r1 ads R[r1] = M[ads]

indirect addressing ld r1 @d r2 R[r1] = M[d+R[r2]]

index addressing ld r1 +r2 r3 R[r1] = M[R[r2]+R[r3]]

similarly for store instruction

absolute st r1 ads M[ads] = R[r1]

indirect st r1 @d r2 M[d+R[r2]] = R[r1]

index st r1 +r2 r3 M[R[r2]+R[r3]] = R[r1]

Instruction type
arithmetic and logic:

add sub mul div

and or not xor shl shr

eq ne lt le gt ge

control flow:

jmp jt jf jal ret

data:

ld st mv push pop

Instruction meaning

false == 0

true != 0

Data
ld r1 ads is R[r1] = M[ads] load absolute

ld r1 @d r2 is R[r1] = M[d+R[r2]] load indirect

ld r1 +r2 r3 is R[r1] = M[R[r2]+R[r3]] load index

st r1 ads is M[ads] = R[r1] store absolute

st r1 @d r2 is M[d+R[r2]] = R[r1] store indirect

st r1 +r2 r3 is M[R[r2]+R[r3]] = R[r1] store index

jmp ads is pc = ads

jt r1 ads is if R[r1] != 0 pc = ads

jf r1 ads is if R[r1] == 0 pc = ads

jal r1 ads is R[r1] = PC; PC = ads jump and link

ret r1 is PC = R[r1] return

mv r1 r2 is R[r1] = R[r2]

mv r1 #n is R[r1] = #n move immediate

Arithmetic
two-complement integer arithmetic

op r1 r2 r3 is R[r1] = R[r2] op R[r3]

op r1 r2 #n is R[r1] = R[r2] op n

add r1 r2 r3 R[r1] = R[r2] + R[r3] add

add r1 r2 #n R[r1] = R[r2] + sign extended n add immediate

...

logic (bitwise)
and r1 r2 r3 R[r1] = R[r2] bitand R[r3] and

and r1 r2 #n R[r1] = R[r2] bitand sign extended n and immediate

...

eq r1 r2 r3 R[r1] = R[r2] == R[r3] equal

eq r1 r2 #n R[r1] = R[r2] == #n equal immediate

...

shl r1 r2 r3 R[r1] = R[r2] << R[r3] shift left

shl r1 r2 #n R[r1] = R[r2] << #n shift left immediate

. . .

not r1 r2 R[r1] = ~R[r2] logical not

trap n special instruction, n is in r1-field.

trap 0 stop simulation

trap 1 print integer in R[30]

trap 2 print character in R[30]

Stack operation
To facilitate passing the parameters to a subroutine and also to save state (link register) for

recursive call, two stack operations are defined: push, pop. r1 is used as a stack pointer.

push r1 r2 R[r1]++; M[R[r1]]=R[r2]

pop r1 r2 R[r2] = M[R[r1]]; R[r1]—

pushm r1 push R[0]..R[15] to stack

popm r1 pop R[0]..R[15] from stack

Interrupt

There is one level hardware interrupt and one software interrupt. R[31] stores the PC when an

interrupt occurs. It is used for returning from an Interrupt Service Routine. The interrupt vector

is designated at the location 1000+core_id (where core_id is 0…NC-1, where NC is the number

of core).

ei enable interrupt

di disable interrupt

int 0 R[31] = PC, PC = M[1000+cid], software interrupt

reti PC = R[31]

wfi wait for interrupt

intx r1 send interrupt signal to core R[r1]

Multicore support

cid r1 return core_id in R[r1]

sync sync all cores

Instruction format
L-format op:5 r1:5 ads:22

D-format op:5 r1:5 r2:5 disp:17

X-format op:5 r1:5 r2:5 r3:5 xop:12

(r1 dest, r2,r3 source, ads and disp are sign extended)

Instructions are fixed length at 32 bits. There are 32 registers. The address space is 32-bit (4G)

with 22-bit direct addressable (4M). The addressing unit is word (32-bit).

Opcode encoding
opcode op format

0 nop L

1 ld r1 ads L (ads 22 bits)

2 ld r1 @d r2 D (d 17 bits)

3 st r1 ads L

4 st r1 @d r2 D

5 mv r1 #n L (n 22 bits)

6 jmp ads L (ads 22 bits)

7 jal r1 ads L (ads 22 bits)

8 jt r1 ads L

9 jf r1 ads L

10 add r1 r2 #n D (n 17 bits)

11 sub r1 r2 #n D

12 mul r1 r2 #n D

13 div r1 r2 #n D

14 and r1 r2 #n D

15 or r1 r2 #n D

16 xor r1 r2 #n D

17 eq r1 r2 #n D

18 ne r1 r2 #n D

19 lt r1 r2 #n D

20 le r1 r2 #n D

21 gt r1 r2 #n D

22 ge r1 r2 #n D

23 shl r1 r2 #n D

24 shr r1 r2 #n D

25..30 undefined

31 extended op X

xop

0 add r1 r2 r3 X

1 sub r1 r2 r3 X

2 mul r1 r2 r3 X

3 div r1 r2 r3 X

4 and r1 r2 r3 X

5 or r1 r2 r3 X

6 xor r1 r2 r3 X

7 eq r1 r2 r3 X

8 ne r1 r2 r3 X

9 lt r1 r2 r3 X

10 le r1 r2 r3 X

11 gt r1 r2 r3 X

12 ge r1 r2 r3 X

13 shl r1 r2 r3 X

14 shr r1 r2 r3 X

15 mv r1 r2 X

16 ld r1 +r2 r3 X

17 st r1 +r2 r3 X

18 ret r1 X

19 trap n X use r1 as trap code (n 0..31)

20 push r1 r2 X use r1 as stack pointer

21 pop r1 r2 X use r1 as stack pointer

22 not r1 r2 X

23 int 0 X

24 reti X no argument

25 ei X use r1 as sp

26 di X use r1 as sp

27 pushm r1 X push multiple, r1 as sp

28 popm r1 X pop multiple, r1 as sp

29 cid r1 X

30 wfi X

31 intx r1 X

32 sync X

33..4095 undefined

Historical fact

S30 is based on S21 instruction set. S21 is an extension of S2 (S2, 2007), as a result of my

experience in teaching assembly language. S2 has been used for teaching since 2001. S2 itself

is an "extended" version of S1 (a 16-bit processor) which was created in 1997.

To improve understandability of S2 assembly language, flags are not used. Instead, new logical

instructions that have 3-address are introduced. The result (true/false) is stored in a register.

Two new conditional jumps are introduced "jt", "jf" to make use of the result from logical

instructions. To avoid the confusion between absolute addressing and moving between registers,

a new instruction "mv" is introduced. (and "ld r1 #n" is eliminated.)

The opcode format and assembly language format for S2 follow the tradition “dest = source1 op

source2” from well-known historical computers: PDP, VAX and IBM S360.

To complement the value of a register, xor with 0xFFFFFFFF (-1) can be used.

xor r1 r2 #-1 r1 = complement r2

The difference between S3.0 and S2.1 is as follows:

R[0] is free in S30, versus it is always zero in S2.1. Interrupt keeps return address in R[31],

versus S2.1 keeps it in special RetAds register. All these changes made the instruction set

simpler. S30 has additional instructions to control multicore: cid, wfi, initx, sync.

last update 1 May 2016

