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DISTRIBUTION OF PRIME NUMBERS

We shall study some functions
of a real or a complex variable

That are related to the 
distribution of prime numbers.

DISTRIBUTION OF PRIME NUMBERS
OCCURRENCE OF PRIMES

From 1 to 100, there are 25 prime numbers:

2 3 5 7
11 13 17 19
23 29
31 37
41 43 47
53 59
61 67
71 73 79
83 89
97
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DISTRIBUTION OF PRIME NUMBERS
OCCURRENCE OF PRIMES

From 1 to 1000, each 100 contains
25-21-16-16-17-14-16-14-15-14

From 106 to 106+1000, each 100 contains
6-10-8-8-7-7-10-5-6-8

From 1012 to 1012+1000, each 100 contains
4-6-2-4-2-4-3-5-1-6

The occurrence of primes is very irregular.
However, when the large scale distribution
of primes is considered, it appears in many
way quite regular.

DISTRIBUTION OF PRIME NUMBERS
OCCURRENCE OF PRIMES

Except 2 and 3, any two consecutive primes must
have a distance that is at least equal to 2. Pairs of
primes with this shortest distance are called twin
primes. Of the positive integers ≤ 100, there are
eight twin primes, namely,

(3, 5), (5, 7), (11, 13), (17, 19),
(29, 31), (41, 43), (59, 61), (71, 73).

There are however arbitrarily long distances between
two  consecutive primes, that id, there are arbitrarily
long sequences of consecutive composite numbers.
For an arbitrary positive number n > 1, the following
n-1 numbers

n!+2, n!+3, n!+4, …, n!+n
are all composite numbers.
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DISTRIBUTION OF PRIME NUMBERS
PRIME DISTRUBUTION FUNCTION

DEFINITION

Let x be a positive integer ≥ 1.
Then π(x), prime distribution function,
prime counting function,
is defined as follows:

π(x) = Σ(p≤x, p prime) 1.

That is π(x) is the number of primes less than or equal to x.

The numerical values of the ratio of π(x)/x is
limx→∞ π(x)/x = 0

DISTRIBUTION OF PRIME NUMBERS
PRIME DISTRUBUTION FUNCTION

EXAMPLE

x π(x) π(x)/x

10 4 0.4
102 25 0.25
103 168 0.168
104 1229 0.1229
105 9592 0.09592
106 78498 0.078498
107 664579 0.0664579
108 5761455 0.05761455
109 50847534 0.050847534
1010 455052511 0.04550525110
… … …
1020 2220819602560918840 0.02220819602560918840
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DISTRIBUTION OF PRIME NUMBERS
APPROXIMATIONS OF π(x)

RESULTS

1789 Legendre proposed
(using the sieve of Eratosthenes)

π(x) = π(√x) – 1 + Σ µ(d)  n/d 
where

the sum is over all divisors d of the product
of all primes p ≤ x, and
µ(d) is the Mobius function.

1808 Legendre proposed

π(x) ≈ x / ( ln x – A(x))
with

for large x,  A(x) = 1.08366…

DISTRIBUTION OF PRIME NUMBERS
APPROXIMATIONS OF π(x)

RESULTS

1850 Chebyshev shown that

lim (x→∞) A(x) = 1.08366…
and

0.92129 ( x / ln x ) < π(x) < 1.1056 ( x / ln x )
for large x.

1892 Sylvester shown that

0.95695 ( x / ln x ) < π(x) < 1.04423 ( x / ln x )
for every sufficiently large x.
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DISTRIBUTION OF PRIME NUMBERS
APPROXIMATIONS OF π(x)

THEOREM

PRIME NUMBER THEOREM (GAUSS)

π(x) is asymptotic to x/ln x.
That is

limx→∞ π(x)/(x/ln x) = 1.

CHEBYSHEV’s θ-FUNCTION
Let θ-function, θ(x) = Σ(p≤x) ln p.
We have that 

limx→∞ θ(x)/x = 1.
1896

THE COMPLETED PROOF BY

Jacques Hadamard & De la Vallée-Poussin

DISTRIBUTION OF PRIME NUMBERS
APPROXIMATIONS OF π(x)

EXAMPLE

x π(x) x/ln x π(x)/( x/ln x )

10 4 4.3… 0.93…
102 25 21.7… 1.15…
103 168 144.8… 1.16…
104 1229 1085.7… 1.13…
105 9592 8685.8… 1.13…
106 78498 72382.5… 1.08…
107 664579 620420.5… 1.07…
108 5761455 5428680.9… 1.06…
109 50847534 48254942.5… 1.05…
1010 455052511 434294481.9… 1.04…
… … … …
1020 2220819602560918840 2171472409516259138.2… 1.02
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DISTRIBUTION OF PRIME NUMBERS
APPROXIMATIONS OF π(x)

THEOREM

PRIME NUMBER THEOREM (GAUSS)

π(x) is asymptotic to x/ln x.
That is

limx→∞ π(x)/Li(x) = 1.

Li(x) = logarithmic integral

Li(x) =      (1/ ln t)  dt
0

x

DISTRIBUTION OF PRIME NUMBERS
APPROXIMATIONS OF π(x)

EXAMPLE

x π(x) Li(x) π(x)/Li(x)

103 168 178 0.94382…
104 1229 1246 0.98635…
105 9592 9630 0.99605…
106 78498 78628 0.99834…
107 664579 664918 0.99949…
108 5761455 5762209 0.99986…
109 50847534 50849235 0.99996…
1010 455052511 455055615 0.999993…
… … … …
1019 234257667276344607 234057667376222382 0.999999999573…

Approximation of the nth prime number N.
N ∼ n ln n.
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THEORY OF CONGRUENCES
PROPERTIES

DEFINITION

Let a be an integer.
Let n be a positive integer.

“a mod n” to be the remainder r
when a is divided by n.
That is
r = a mod n = a - a/n n.

“a congruent to b modulo n” ,
denoted a≡b (mod n),
if n is a divisor of a-b, or equivalently,
if n | (a-b).

THEORY OF CONGRUENCES
PROPERTIES

THEOREM

Let a be an integer.
then the congruence modulo n is

reflexive
symmetric
transitive.
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THEORY OF CONGRUENCES
PROPERTIES

DEFINITION

If x ≡ a (mod n), then
a is called a residue of x modulo n.

The residue class of a mod n,
denoted by [a]n is the set of all those integers
that are congruent to a modulo n.

That is

[a]n = { x | x ∈ Z and x ≡ a (mod n) }

= { a + kn | k ∈ Z }

THEORY OF CONGRUENCES
PROPERTIES

DEFINITION

If x ≡ a (mod n) and
0 ≤ a ≤ n-1, then
a is called the least (nonnegative) residue of x modulo n.

The set of all residue classes modulo n,

often denoted by Z/nZ or Zn, is

Z/nZ = { [a]n | 0 ≤ a ≤ n-1 }
= { 0, 1, 2, …, n-1 }.

EXAMPLE
-a < 0 is in [n-a]n, provided n ≥ a, since –a ≡ n-a (mod n).
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THEORY OF CONGRUENCES
PROPERTIES

THEOREM

Let n be a positive integer.
Then we have

[a]n = [b]n if and only if a ≡ b (mod n),

[a]n ≠ [b]n if and only if a ∩ b = ∅ .

Two residue classes modulo n are either disjoint or identical.

There are exactly n distinct residue classes modulo n,
namely, [0]n, [1] n, …, [n-1] n,
and they contain all of the integers.

THEORY OF CONGRUENCES
PROPERTIES

DEFINITION

Let n be a positive integer.
A set A is called a complete system of residues modulo n,
if the set contains exactly 
one element of each residue class modulo n.

Let [a]n be a residue class modulo n.
We say that [a]n is relatively prime to n
if each element in [a]n is relatively prime to n.

EXAMPLE

The ten residue classes modulo 10,
clearly, [1]10, [3]10, [7]10, [9]10 are residue classes
that are relatively prime to 10.
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THEORY OF CONGRUENCES
PROPERTIES

PROPOSITIONS

If a residue class modulo n has one element
which is relatively prime to n,
then every element in that residue class
is relatively prime to n.

If n is prime, then every residue classes modulo n
(except [0]n) are relatively prime to n.

DEFINITION

Let n be a positive integer.
φ(n) denotes the number of residue classes modulo n
which is relatively prime to n.
A set contains one element from each such residue class
is called a reduced system of residues.

THEORY OF CONGRUENCES
MODULAR ARITHMETIC

[a]n +n [b]n = [a+b]n

[a]n –n [b]n = [a-b]n

[a]n ×n [b]n = [ab]n

But
[a]n ÷n [b]n = Problem

(a/b) mod n exists if and only if (1/b) mod n exists.

(1/b) mod n is called the multiplicative inverse
(modular inverse) of b mod n.
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THEORY OF CONGRUENCES
MODULAR ARITHMETIC

THEOREM

The multiplicative inverse (1/b) mod n exists
if and only if
gcd(b,n) = 1.

There are φ(n) numbers b
for which (1/b) mod n exists.

Z/nZ is a field
if and only if
n is prime.

THEORY OF CONGRUENCES
LINEAR CONGRUENCES

Linear congruence ax ≡ b (mod n)
is equivalent to the
Diophantine equation ax – ny = b.

That is ax ≡ b (mod n)⇔ ax – ny = b.
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THEORY OF CONGRUENCES
LINEAR CONGRUENCES

THEOREMS

Let gcd(a,n) = 1.
Then the linear congruence ax ≡ b (mod n) 
has exactly one solution.

Let gcd(a,n) = d.
Then the linear congruence ax ≡ b (mod n)
has solutions
if and only if
d | b.

THEORY OF CONGRUENCES
FERMAT’s LITTLE THEOREM

THEOREM

Let a be a positive integer.
Let p be a prime number.
if gcd(a,p) = 1, then

ap-1 ≡ 1 (mod p).

CONVERSE

Let n be an odd positive integer.
If gcd(a,n) = 1 and an-1 ≡ 1 (mod n).
Then n is composite.
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THEORY OF CONGRUENCES
EULER’s THEOREM

THEOREM

Let a and n be positive integers
with gcd(a,n) = 1.
Then

aφ(n) ≡ 1 (mod n).

THEORY OF CONGRUENCES
CARMICHAEL’S THEOREM

THEOREM

Let a and n be positive integers
with gcd(a,n) = 1.
Then

aλ(n) ≡ 1 (mod n),

where λ(n) is Carmichael’s function.
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THEORY OF CONGRUENCES
WILSON’S THEOREM

THEOREM

Let p be a prime number.
Then

(p-1)!  ≡ -1 (mod p).

CONVERSE

If n is an odd positive integer > 1
and W(p) = ((p-1)!+1)/p ≡ 0 (mod p) is an integer,
or equivalently if
(n-1)! ≡ -1 (mod p2).

THEORY OF CONGRUENCES
MULTIPLICATIVE INVERSE

THEOREM

Let x be the multiplicative inverse 1/a modulo n.
if gcd(a,n) = 1, then

x ≡ (1/a) (mod n) is given by x ≡ aφ(n)-1 (mod n).

COROLLARY

For b/a is assumed to be in lowest terms.
If gcd(a,n) = 1, then

x ≡ (b/a) (mod n) is given by x ≡ b × aφ(n)-1 (mod n).
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THEORY OF CONGRUENCES
CHINESE REMAINDER THEOREM

THEOREM (CRT)

If m1,m2,…,mk are pairwise relatively prime
and greater than 1,
a1,a2,…,ak are any integers,

then there is a solution x
to the following simultaneous congruences:

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),
…
x ≡ ak (mod mk).

If x and x’ are two solutions, x ≡ x’ (mod M)
where M = m1m2…mk.

THEORY OF CONGRUENCES
CHINESE REMAINDER THEOREM

REMARK

If the system of linear congruences is soluble,
then its solution can be conveniently described
as follows:

x = Σ(i=1 to k) aiMiM’i (mod m),

where m = m1m2…mk,
Mi = m/mi,
M’i = Mi

-1 (mod mi)

for i = 1, 2, …, k.
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THEORY OF CONGRUENCES
CHINESE REMAINDER THEOREM

EXAMPLE

Consider the problem,

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),
x ≡ 2 (mod 7).

We have m = m1m2m3 = 3 × 5 × 7 = 105,
M1 = m/m1 = 105/3 = 35,
M’1 = M1

-1 (mod m1) = 35-1 (mod 3) = 2,
M2 = m/m2 = 105/5 = 21,
M’2 = M2

-1 (mod m2) = 21-1 (mod 5) = 1,
M3 = m/m3 = 105/7 = 15,
M’3 = M3

-1 (mod m3) = 15-1 (mod 7) = 1.
x = 2×35×2 + 3×21×1 + 2×15×1 (mod 105) = 23.


