

DISTRIBUTIC	ON C)F PF	RIME NUMBERS
OCCL	JRREN	NCE C	DF PRIMES
From 1 to 10	00, ther	e are 25	5 prime numbers:
2	3	5	7
11	13	17	19
23	29		
31	37		
41	43	47	
53	59		
61	67		
71	73	79	
83	89		
97			

DISTRIBUTION OF PRIME NUMBERS

OCCURRENCE OF PRIMES

From 1 to 1000, each 100 contains 25-21-16-16-17-14-16-14-15-14

From 10⁶ to 10⁶+1000, each 100 contains 6-10-8-8-7-7-10-5-6-8

From 10¹² to 10¹²+1000, each 100 contains 4-6-2-4-2-4-3-5-1-6

The occurrence of primes is very irregular. However, when the large scale distribution of primes is considered, it appears in many way quite regular.

DISTRIBUTION OF PRIME NUMBERS

OCCURRENCE OF PRIMES

Except 2 and 3, any two consecutive primes must have a distance that is at least equal to 2. Pairs of primes with this shortest distance are called twin primes. Of the positive integers \leq 100, there are eight twin primes, namely,

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73).

There are however arbitrarily long distances between two consecutive primes, that id, there are arbitrarily long sequences of consecutive composite numbers. For an arbitrary positive number n > 1, the following n-1 numbers

n!+2, n!+3, n!+4, ..., n!+n are all composite numbers.

DISTRIBUTION OF PRIME NUMBERS

PRIME DISTRUBUTION FUNCTION

DEFINITION

Let x be a positive integer ≥ 1 .

Then $\pi(x)$, prime distribution function, prime counting function, is defined as follows:

 $\pi(\mathbf{x}) = \sum_{(p \le x, p \text{ prime})} 1.$

That is $\pi(x)$ is the number of primes less than or equal to x.

The numerical values of the ratio of $\pi(x)/x$ is $\lim_{x\to\infty} \pi(x)/x = 0$

DISTRIBUTION OF PRIME NUMBERS PRIME DISTRUBUTION FUNCTION		
EXAN	IPLE	
x	π(x)	$\pi(x)/x$
$ \begin{array}{r} 10 \\ 10^2 \\ 10^3 \\ 10^4 \\ 10^5 \\ 10^6 \\ 10^7 \\ 10^8 \\ 10^9 \\ 10^{10} \\ \end{array} $	4 25 168 1229 9592 78498 664579 5761455 50847534 455052511	0.4 0.25 0.168 0.1229 0.09592 0.078498 0.0664579 0.05761455 0.050847534 0.04550525110
 10 ²⁰	 2220819602560918840	 0.02220819602560918840

DISTRIBUTION OF PRIME NUMBERS		
APPROXIMATIONS OF $\pi(x)$		
RESULTS		
1789	Legendre proposed (using the sieve of Eratosthenes)	
where	$\pi(x) = \pi(\sqrt{x}) - 1 + \Sigma \mu(d) \lfloor n/d \rfloor$ the sum is over all divisors d of the product of all primes $p \le x$, and $\mu(d)$ is the Mobius function.	
1808	Legendre proposed	
with	$\pi(x) \approx x / (\ln x - A(x))$ for large x, $A(x) = 1.08366$	

APPROXIMATIONS OF $\pi(x)$			
EXAN	IPLE		
x	$\pi(\mathbf{x})$	x/ln x	$\pi(x)/(x/\ln x)$
10	4	4.3	0.93
10 ²	25	21.7	1.15
10 ³	168	144.8	1.16
104	1229	1085.7	1.13
105	9592	8685.8	1.13
10 ⁶	78498	72382.5	1.08
10^{7}	664579	620420.5	1.07
10 ⁸	5761455	5428680.9	1.06
10^{9}	50847534	48254942.5	1.05
10^{10}	455052511	434294481.9	1.04
1020			

DISTRIBUTION OF PRIME NUMBERS APPROXIMATIONS OF $\pi(x)$ THEOREM PRIME NUMBER THEOREM (GAUSS) $\pi(x)$ is asymptotic to $x/\ln x$. That is $\lim_{x\to\infty} \pi(x)/\text{Li}(x) = 1$. Li(x) = logarithmic integral $\mu(x) = \int_{0}^{x} (1/\ln t) dt$

THEORY OF CONGRUENCES PROPERTIES	
DEFINITION	
Let a be an integer. Let n be a positive integer. "a mod n" to be the remainder r when a is divided by n. That is r = a mod n = a - [a/n] n. "a congruent to b modulo n", denoted a=b (mod n), if n is a divisor of a-b, or equivalently, if n (a-b).	

THEORY OF CONGRUENCES PROPERTIES

THEOREM

Let n be a positive integer. Then we have

 $[a]_n = [b]_n$ if and only if $a \equiv b \pmod{n}$,

 $[a]_n \neq [b]_n$ if and only if $a \cap b = \emptyset$.

Two residue classes modulo n are either disjoint or identical.

There are exactly n distinct residue classes modulo n, namely, $[0]_n$, $[1]_n$, ..., $[n-1]_n$, and they contain all of the integers.

THEORY OF CONGRUENCES PROPERTIES PROPOSITIONS	
If a residue class modulo n has one element which is relatively prime to n, then every element in that residue class is relatively prime to n.	
If n is prime, then every residue classes modulo n (except $[0]_n$) are relatively prime to n.	
DEFINITION	
Let n be a positive integer. φ(n) denotes the number of residue classes modulo n which is relatively prime to n. A set contains one element from each such residue class is called a reduced system of residues.	

THEORY OF CONGRUENCES MODULAR ARITHMETIC	
THEOREM	
The multiplicative inversif and only if gcd(b,n) = 1.	se (1/b) mod n exists
There are $\phi(n)$ numbers for which $(1/b) \mod n$ es	b xists.
$\mathcal{Z}/n\mathcal{Z}$ is a field if and only if n is prime.	

THEORY OF CONGRUENCES LINEAR CONGRUENCES

Linear congruence $ax \equiv b \pmod{n}$ is equivalent to the Diophantine equation $ax - ny \equiv b$.

That is $ax \equiv b \pmod{n} \Leftrightarrow ax - ny \equiv b$.

THEORY OF CONGRUENCES LINEAR CONGRUENCES

THEOREMS

Let gcd(a,n) = 1. Then the linear congruence $ax \equiv b \pmod{n}$ has exactly one solution.

Let gcd(a,n) = d. Then the linear congruence $ax \equiv b \pmod{n}$ has solutions if and only if $d \mid b$.

THEORY OF CONGRUENCES EULER'S THEOREM

THEOREM

Let a and n be positive integers with gcd(a,n) = 1. Then

 $a^{\phi(n)} \equiv 1 \pmod{n}$.

THEORY OF CONGRUENCES CARMICHAEL'S THEOREM

THEOREM

Let a and n be positive integers with gcd(a,n) = 1. Then

 $a^{\lambda(n)} \equiv 1 \pmod{n}$

where $\lambda(n)$ is Carmichael's function.

THEORY OF CONGRUENCES WILSON'S THEOREM

THEOREM

Let p be a prime number. Then

 $(p-1)! \equiv -1 \pmod{p}.$

CONVERSE

If n is an odd positive integer > 1 and $W(p) = ((p-1)!+1)/p \equiv 0 \pmod{p}$ is an integer, or equivalently if $(n-1)! \equiv -1 \pmod{p^2}$.

THEORY OF CONGRUENCES MULTIPLICATIVE INVERSE

THEOREM

Let x be the multiplicative inverse 1/a modulo n. if gcd(a,n) = 1, then

 $x \equiv (1/a) \pmod{n}$ is given by $x \equiv a^{\phi(n)-1} \pmod{n}$.

COROLLARY

For b/a is assumed to be in lowest terms. If gcd(a,n) = 1, then

 $x \equiv (b/a) \pmod{n}$ is given by $x \equiv b \times a^{\phi(n)-1} \pmod{n}$.

THEORY OF CONGRUENCES CHINESE REMAINDER THEOREM

EXAMPLE

Consider the problem,

$ \mathbf{x} \equiv 2 \\ \mathbf{x} \equiv 3 \\ \mathbf{x} \equiv 2 $	2 (mod 3), 3 (mod 5), 2 (mod 7).
We have	$\begin{split} & m = m_1 m_2 m_3 = 3 \times 5 \times 7 = 105, \\ & M_1 = m/m_1 = 105/3 = 35, \\ & M'_1 = M_1^{-1} \pmod{m_1} = 35^{-1} \pmod{3} = 2, \\ & M_2 = m/m_2 = 105/5 = 21, \\ & M'_2 = M_2^{-1} \pmod{m_2} = 21^{-1} \pmod{5} = 1, \\ & M_3 = m/m_3 = 105/7 = 15, \\ & M'_3 = M_3^{-1} \pmod{m_3} = 15^{-1} \pmod{7} = 1. \\ & x = 2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1 \pmod{105} = 23. \end{split}$