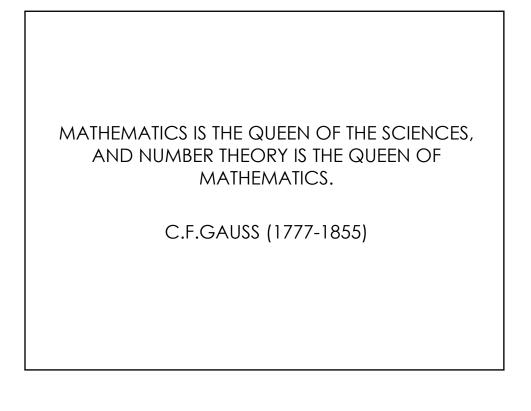
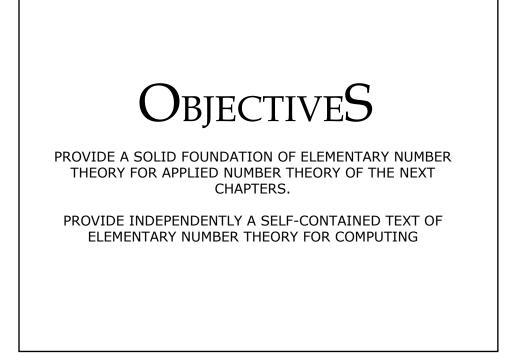
2110301 INTRODUCTION TO DISCRETE STRUCTURES THEORY OF NUMBER FOR COMPUTING ELEMENTARY & APPLIED NUMBER THEORY

Athasit Surarerks, Dr. en Inf. FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY





<section-header>DecliminationLet us recall two integral functions
That we use in this section.Floor & Ceiling
Modulo

Floor & Ceiling

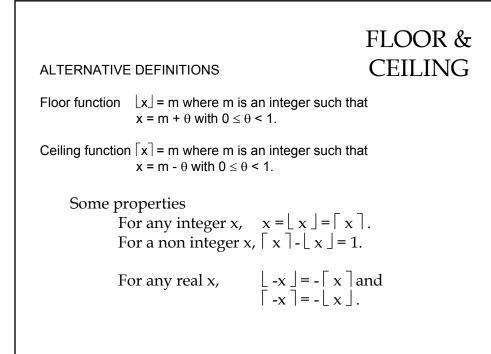
Floor function of a real number x, denoted by $\lfloor x \rfloor$, is a function from x to the maximum integer that is less than or equal to x.

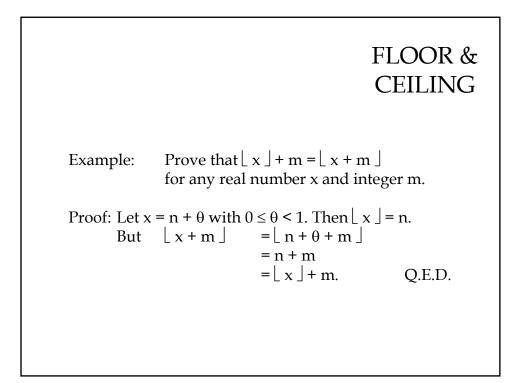
 $\lfloor x \rfloor$ = m where m is an integer, x-1 < m \leq x

Ceiling function of a real number x, denoted by $\lceil x \rceil$, is a function from x to the minimum integer that is greater than or equal to x.

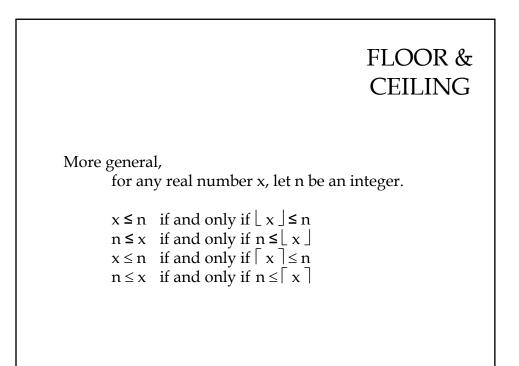
 $\lceil x \rceil$ = m where m is an integer, x \leq m < x+1

ExampleFLOOR &
CEILING $\lfloor 3.33 \rfloor = 3$ $\lfloor -3.33 \rfloor = -4$ $\lfloor -5 \rfloor = -5$ $\lfloor 5 \rfloor = 5$ $\lceil 3.33 \rceil = 4$ $\lceil -3.33 \rceil = -3$ $\lceil -5 \rceil = 5$ $\lceil 5 \rceil = 5$ Find $\lfloor \log_2 10 \rfloor$ $\lfloor x \rfloor = m$ means that $m \le x < m+1$. $\lceil x \rceil = m$ means that $m = 1 < x \le m$.Since $2^3 \le 10 \le 2^4$, we have that $3 \le \log_2 10 \le 4$.Since $2^3 \le 10 \le 2^4$, we have that $3 \le \log_2 10 \le 4$.

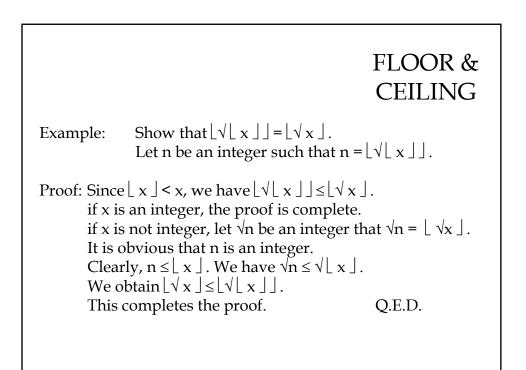


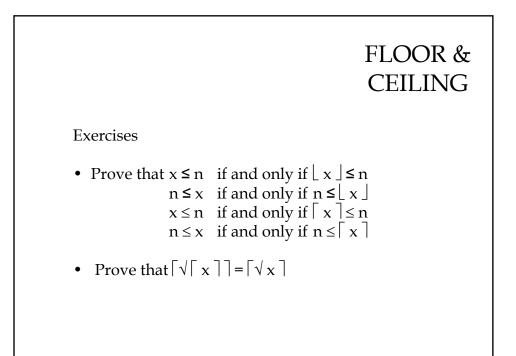


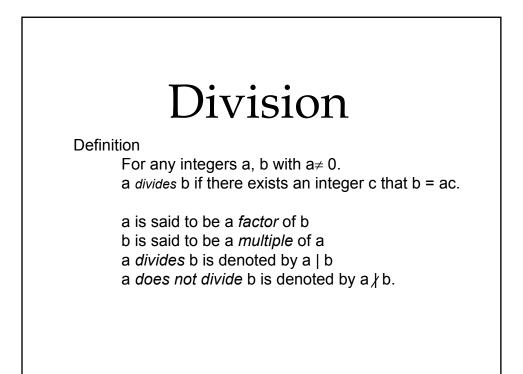
 $\begin{array}{l} FLOOR \&\\ CEILING \end{array}$ Example: Prove that $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor$.
Proof: Let $x = n + \theta$ with $0 \leq \theta < 1$. Then $\lfloor x \rfloor = n$.
Let $y = m + \beta$ with $0 \leq \beta < 1$. Then $\lfloor y \rfloor = m$.
But $\lfloor x + y \rfloor = \lfloor (n + m) + (\theta + \beta) \rfloor; 0 \leq (\theta + \beta) < 2$.
Case $0 \leq \epsilon = (\theta + \beta) < 1$ $\lfloor (n + m) + (\theta + \beta) \rfloor = \lfloor (n + m) + \epsilon \rfloor$ = m + n.
Case $1 \leq (\theta + \beta) < 2$, Let $\epsilon = (\theta + \beta) - 1$. Then $0 \leq \epsilon < 1$. $\lfloor (n + m) + (\theta + \beta) \rfloor = \lfloor (n + m) + 1 + \epsilon \rfloor$ = m + n + 1.
In both case, $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor$.
Q.E.D.

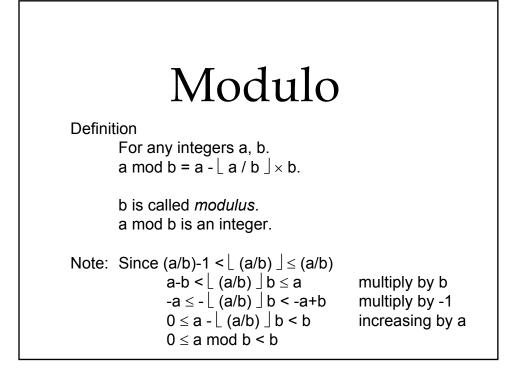


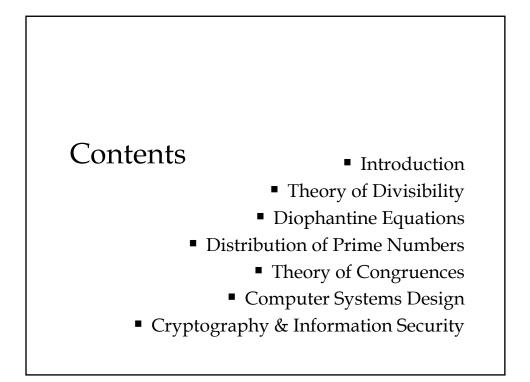
FLOOR & CEILING Interesting result Let f be a continuous & monotonically increasing function. If f satisfies the following condition: f (x) is an integer only if x is an integer then $\lfloor f(x) \rfloor = \lfloor f(\lfloor x \rfloor) \rfloor$ and $\lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil$. Proof: Show that $\lfloor f(x) \rfloor = \lfloor f(\lfloor x \rfloor) \rfloor$. Let f be a continuous & monotonically increasing function. Since $\lfloor x \rfloor \leq x$, we have $f(\lfloor x \rfloor) \leq f(x)$ and $\lfloor f(\lfloor x \rfloor) \rfloor \leq \lfloor f(x) \rfloor$. Let y < x. That is $\lfloor f(y) \rfloor < \lfloor f(x) \rfloor$. Since f is continuous, there exists z such that $f(z) = \lfloor f(x) \rfloor$ with $y < z \le x$. Then z is an integer (f satisfies the condition). We also have that $z \leq \lfloor x \rfloor$. That is $\lfloor f(x) \rfloor = f(z) \leq f(\lfloor x \rfloor)$. $\lfloor f(x) \rfloor = \lfloor f(x) \rfloor \rfloor \leq \lfloor f(\lfloor x \rfloor) \rfloor.$ Q.E.D.









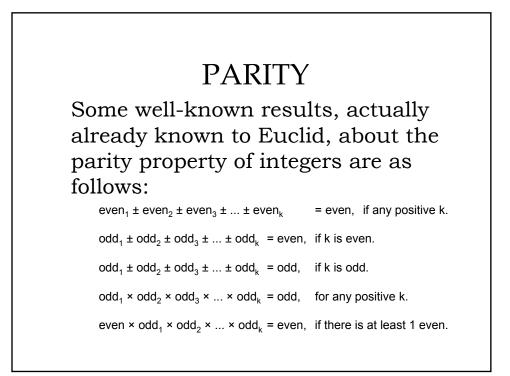


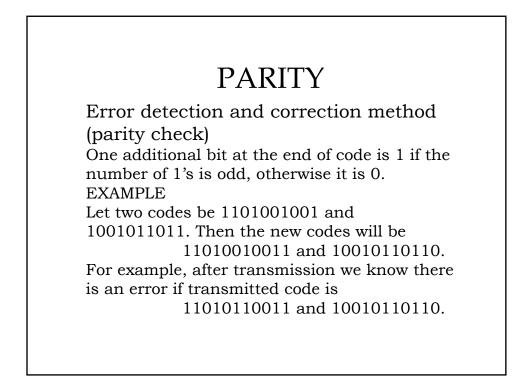
Introduction

Brief review of the fundamental ideas of number theory and then present some mathematical preliminaries of elementary number theory.

Introduction

Number theory : the theory of the properties of integers such as Properties of numbers •parity •primality •Multiplicativity •additivity Algebraic Preliminaries





Erro	PARITY CHECK Error detection and correction method (parity check)											
1	0	0	1	0	1	1	0	0				
1	0	1	1	1	0	1	1	0				
1	1	0	0	0	0	0	1	1				
0	1	1	0	0	1	0	0	1				
0	0	0	1	1	0	0	0	0				
1	0	1	0	1	0	1	0	1				
0	1	0	0	0	0	0	0	1				
1	0	0	1	1	0	1	0	0				
1	1	0	0	0	0	0	0	0				

PARITY CHECK											
	Erro	r detect	ion	and cor	rrectio	n metł	nod (pa	arity c	heck)		
	1	0	0	1	0	1	1	0	0		
	1	0	1	1	1	0	1	1	0		
	1	1	0	0	0	0	0	1	1		
	0	1	1	0	0	1	0	0	1		
	0	0	0	1	1	0	0	0	0		
	1	0	1	0	1	0	1	0	1		
	0	1	0	0	0	0	0	0	1		
	1	0	0	1	1	0	1	0	0		
	1	1	0	0	0	0	0	0	0		

PRIMALITY

A positive integer n > 1 that has only two distinct factors, 1 and n itself is called prime; otherwise, it is called composite.

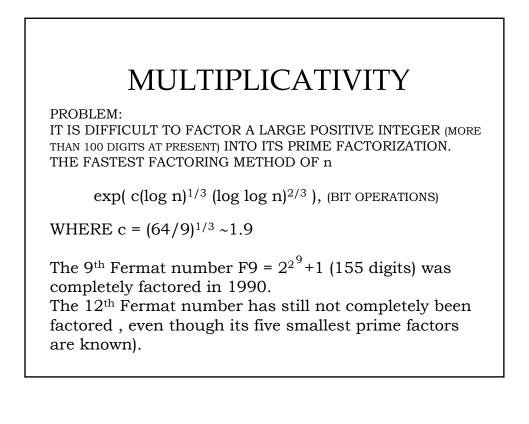
SOME INTERESTING RESULTS • There are infinitely many primes. [Euclid] • Only one even prime: 2 • Two largest twin primes (p and p+2),[1995] 570918348×10⁵¹²⁰±1 and 242206083×2³⁸⁸⁸⁰±1. [11713 digits] • It is not known : infinitely many twin primes? • Infinitely many pairs (p, p+2) with p is prime and p+2 a product of most two primes. [J.R.Chen] • Prime triples (p, p+2, p+6) : (347, 349, 353) • Prime triples (p, p+4, p+6) : (307, 311, 313) • Only one prime triples (p, p+2, p+4) : (3, 5, 7)

SOME INTERESTING RESULTS

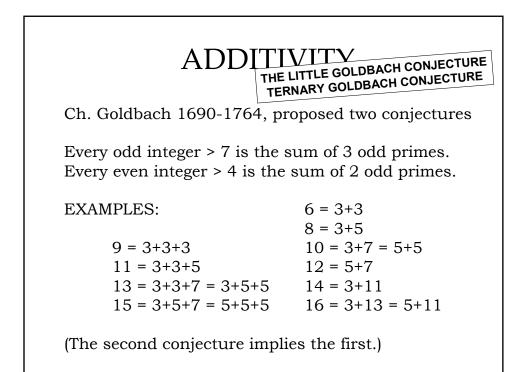
Ancient Chinese mathematicians, If p is a prime number, then p | 2^p -2. Example: 5 is a prime number, and 5 | 30.

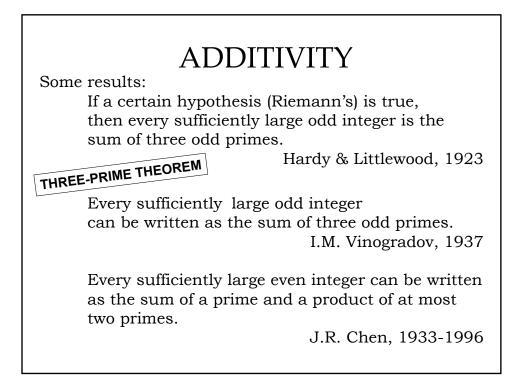
But, there are some composites that satisfy this condition. Example: $341=11\times31$ is not prime, $341 \mid 2^{341} - 2$.

MULTIPLICATIVITY Fundamental Theorem of Arithmetic [Euclid] Any positive integer n > 1, $n = p_1^{\alpha 1} p_2^{\alpha 2} \dots p_k^{\alpha k}$ (unique) $p_1 < p_2 < \dots < p_k$ are primes and where $\alpha_1, \alpha_2, ..., \alpha_k$ are all positive integers. [Proved by Gauss, 1777-1855] **EXAMPLES** $2000 = 2^4 \times 5^3$ 1999 = 19992001 = 3 × 23 × 29 $2002 = 2 \times 7 \times 11 \times 13$ 2003 = 2003 $2004 = 22 \times 3 \times 167$ $2005 = 5 \times 401$ $2006 = 2 \times 17 \times 59$ $2007 = 3^2 \times 223$ $2008 = 2^3 \times 251$



SC	OME INTERESTING RESULTS
THE N	MOST RECENT RECORD [HERMAN TE RIELE,1999]
	RANDOM NUMBER 155 DIGITS (512 BITS)
WRIT	TEN AS THE PRODUCT OF TWO PRIMES (78 DIGIT PRIMES)
AND	102639592829741105772054196573991675900716567 808038066803341933521790711307779
AND	106603488380168454820927220360012878679207958 575989291522270608237193062808643

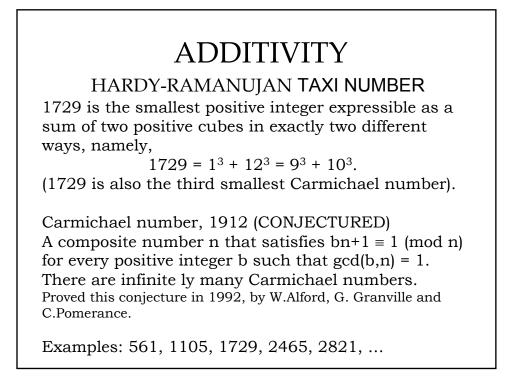




ADDITIVITY

Goldbach partition of integer n, denoted by G(n), is

 $\begin{array}{l} n = p_1 + p_2, \ n \ even \ and \ p_1 < p_2 \\ \text{or} \\ n = p_1 + p_2 + p_3, \ n \ odd \ and \ p_1 < p_2 < p_3. \\ \\ \text{Examples:} \quad |G(100)| = 6 \\ & |G(101)| = 32 \\ & |G(1001)| > 1001. \end{array}$



ADDITIVITY

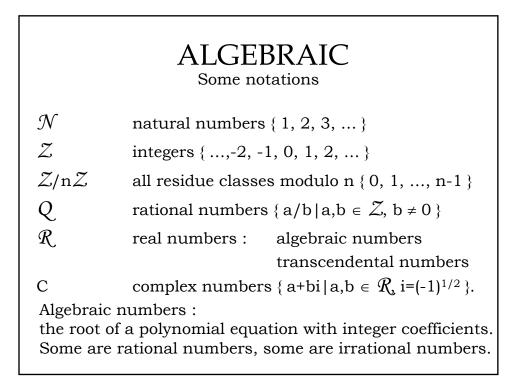
HARDY-RAMANUJAN TAXI NUMBER

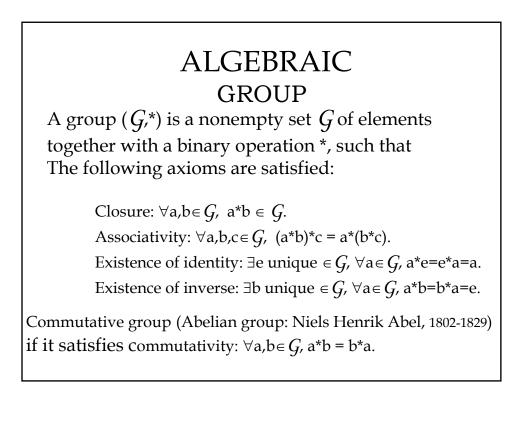
1729 is the smallest positive integer expressible as a sum of two positive cubes in exactly two different ways, namely,

 $1729 = 1^3 + 12^3 = 9^3 + 10^3$. (1729 is also the third smallest Carmichael number).

Fourth powers, known to Euler (1707-1783),

 $635318657 = 59^4 + 158^4 = 133^4 + 134^4.$





ALGEBRAIC SEMIGROUP

A semigroup (G, *) with respect to the binary operation *,

is a nonempty set G of elements together with a binary operation *, such that the following axioms are satisfied:

Closure: $\forall a, b \in G$, $a^*b \in G$.

Associativity: $\forall a,b,c \in G$, $(a^*b)^*c = a^*(b^*c)$.

It is said to be a monoid with respect to the binary operation * if it also satisfies

Existence of identity: $\exists e \text{ unique } \in G, \forall a \in G, a^*e=e^*a=a.$

ALGEBRAIC

Examples:

 $(\mathcal{Z}, +)$ is an abelian group. (additive group)

 (Q^+, \times) , (\mathcal{R}^+, \times) are abelian groups. (multiplicative group)

Definitions

Finite group Infinite group Order of group Subgroup

finite number of elements infinite number of elements the number of elements |G|A nonempty subset of group under the same operation

ALGEBRAIC SUBGROUP

A multiplicative group (G_{\prime} *).

a is an element of G.

The element a^r form a subgroup of *G*, called the subgroup generated by a.

A group *G* is cyclic if $\exists a \in G$ such that $\forall x \in G, x = a^r$ for some integer r.

A ring $(\mathcal{A}, \oplus, \otimes)$ is a set of at least two elements with two binary operations \oplus and \otimes ., which we call addition and multiplication, defined on \mathcal{A} such that the following axioms are satisfied:

Closure under \oplus : $\forall a, b \in \mathcal{A}$, $a \oplus b \in \mathcal{A}$.

Associativity under \oplus : $\forall a, b, c \in \mathcal{A}$, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.

Commutative under \oplus : $\forall a, b \in \mathcal{A}$, $a \oplus b = b \oplus a$.

Zero: $\exists 0$ unique $\in \mathcal{A}$, $\forall a \in \mathcal{A}$, $a \oplus 0 = 0 \oplus a = a$.

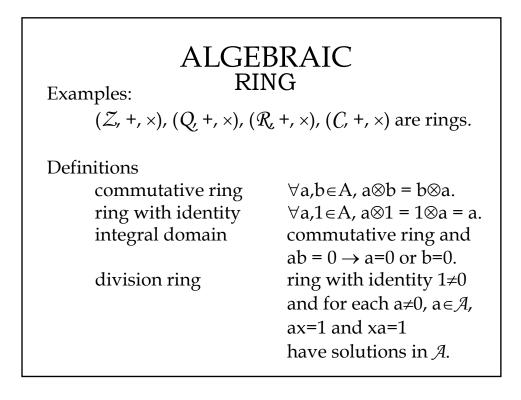
Additive inverse -a: $\forall a \in \mathcal{A}$, $a \oplus (-a) = (-a) \oplus a = 0$.

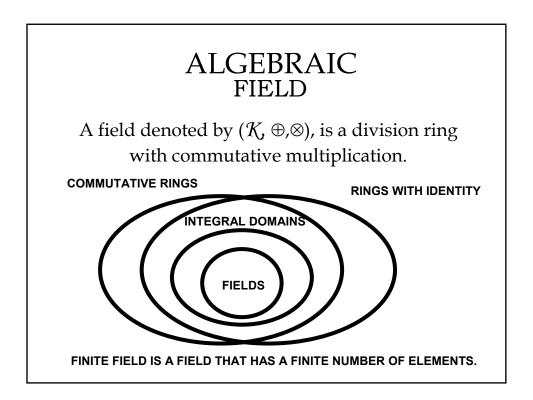
Closure under \otimes : $\forall a, b \in \mathcal{A}$, $a \otimes b \in \mathcal{A}$.

Associativity under \otimes : $\forall a, b, c \in A$, $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.

 $\text{Distributivity under} \otimes : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c), \quad \forall a, b, c \in \mathcal{A}.$

 $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c), \quad \forall a, b, c \in \mathcal{A}.$





ALGEBRAIC EVARISTE GALOIS (1811-1832)

Theorem GF

There exists a field of order q *if and only if* q is a prime power (*i.e.*, q = p^r) with p prime and $r \in \mathcal{N}$. Moreover, if q is a prime power, then there is, up to relabelling, only one field of that order.

ALGEBRAIC EVARISTE GALOIS (1811-1832)											
					G	F(5)					
\oplus	0	1	2	3	4		\otimes	1	2	3	4
0	0	1	2	3	4		1	1	2	3	4
1	1	2	3	4	0		-	-		-	-
2	2	3	4	0	1		2	2	4	1	3
3	3	4	0	1	2		3	3	1	4	2
4	4	0	1	2	3		4	4	3	2	1