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OBJECTIVES
PROVIDE A SOLID FOUNDATION OF ELEMENTARY NUMBER 

THEORY FOR APPLIED NUMBER THEORY OF THE NEXT 
CHAPTERS.

PROVIDE INDEPENDENTLY A SELF-CONTAINED TEXT OF 
ELEMENTARY NUMBER THEORY FOR COMPUTING

Preliminaries

Floor & Ceiling

Modulo

Let us recall two integral functions
That we use in this section.
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Floor & Ceiling
Floor function of a real number x, denoted by x, is 
a function from x to the maximum integer that is less 
than or equal to x.

 x  = m where m is an integer, x-1 < m ≤ x

Ceiling function of a real number x, denoted by x, 
is a function from x to the minimum integer that is 
greater than or equal to x.

 x  = m where m is an integer, x ≤ m < x+1

FLOOR & 
CEILING

Find log2 10

Since 23 ≤ 10 ≤ 24, we have that 3 ≤ log2 10 ≤ 4.
Then log2 10 = 3.

Example

3.33 = 3 -3.33 = - 4 -5 = -5 5 = 5

3.33 = 4 -3.33 = -3 -5 = 5 5 = 5

x = m means that m ≤ x < m+1.

x = m means that m-1 < x ≤ m.
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ALTERNATIVE DEFINITIONS

Floor function x = m where m is an integer such that
x = m + θ with 0 ≤ θ < 1.

Ceiling function x = m where m is an integer such that
x = m - θ with 0 ≤ θ < 1.

FLOOR & 
CEILING

Some properties
For any integer x, x =  x  =  x  .
For a non integer x,  x  -  x  = 1.

For any real x,  -x  = -  x  and
 -x  = -  x  .

FLOOR & 
CEILING

Example: Prove that  x  + m =  x + m 
for any real number x and integer m.

Proof: Let x = n + θ with 0 ≤ θ < 1. Then  x  = n. 
But  x + m  =  n + θ + m 

= n + m
=  x  + m. Q.E.D.
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FLOOR & 
CEILING

Example: Prove that  x  +  y  ≤  x + y  .

Proof: Let x = n + θ with 0 ≤ θ < 1. Then  x  = n.
Let y = m + β with 0 ≤ β < 1. Then   y  = m. 
But  x + y  =  (n + m) + (θ + β)  ; 0 ≤ (θ + β) < 2.
Case 0 ≤ ε = (θ + β) < 1
 (n + m) + (θ + β)  =  (n + m) + ε 

= m + n.
Case 1 ≤ (θ + β) < 2, Let ε = (θ + β) - 1. Then 0 ≤ ε < 1.
 (n + m) + (θ + β)  =  (n + m) + 1 + ε 

= m + n + 1.

In both case,  x  +  y  ≤  x + y  . Q.E.D.

FLOOR & 
CEILING

More general,
for any real number x, let n be an integer.

x ≤ n if and only if  x  ≤ n
n ≤ x if and only if n ≤  x 
x ≤ n if and only if  x  ≤ n
n ≤ x if and only if n ≤  x 
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FLOOR & 
CEILINGInteresting result

Let f be a continuous & monotonically increasing function.
If f satisfies the following condition:

f ( x ) is an integer only if x is an integer

then   f ( x )  =  f (  x  )  and  f ( x )  =  f (  x  )  .

Proof: Show that  f ( x )  =  f (  x  )  . 
Let f be a continuous & monotonically increasing function.
Since  x  ≤ x, we have f (  x  ) ≤ f ( x ) and  f (  x  )  ≤  f ( x ) .

Let y < x. That is  f ( y )  <  f ( x )  .
Since f is continuous, there exists z such that f ( z ) =  f ( x )  with
y < z ≤ x. Then z is an integer (f satisfies the condition).
We also have that z ≤  x . That is  f ( x )  = f ( z ) ≤ f (  x  ) .
 f ( x )  =   f ( x )   ≤  f (  x  )  . Q.E.D.

FLOOR & 
CEILING

Example: Show that √  x   = √ x  .
Let n be an integer such that n = √  x   .

Proof: Since  x  < x, we have √  x   ≤ √ x  .
if x is an integer, the proof is complete.
if x is not integer, let √n be an integer that √n =   √x  .
It is obvious that n is an integer.
Clearly, n ≤  x  . We have √n ≤ √  x  .
We obtain √ x  ≤ √  x   .
This completes the proof. Q.E.D.
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FLOOR & 
CEILING

Exercises

• Prove that x ≤ n if and only if  x  ≤ n
n ≤ x if and only if n ≤  x 
x ≤ n if and only if  x  ≤ n
n ≤ x if and only if n ≤  x 

• Prove that √  x   = √ x 

Division
Definition

For any integers a, b with a≠ 0.
a divides b if there exists an integer c that b = ac.

a is said to be a factor of b
b is said to be a multiple of a
a divides b is denoted by a | b
a does not divide b is denoted by a | b.
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Modulo
Definition

For any integers a, b.
a mod b = a -  a / b  × b.

b is called modulus.
a mod b is an integer.

Note: Since (a/b)-1 <  (a/b)  ≤ (a/b)
a-b <  (a/b)  b ≤ a multiply by b
-a ≤ -  (a/b)  b < -a+b multiply by -1
0 ≤ a -  (a/b)  b < b increasing by a
0 ≤ a mod b < b

Contents Introduction
Theory of Divisibility

Diophantine Equations
Distribution of Prime Numbers

Theory of Congruences
Computer Systems Design

Cryptography & Information Security



9

Introduction
Brief review of the fundamental ideas of 
number theory and then present some 
mathematical preliminaries of elementary 
number theory.

Introduction
Number theory : the theory of the 
properties of integers such as

Properties of numbers
•parity

•primality
•Multiplicativity

•additivity
Algebraic Preliminaries
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PARITY
Some well-known results, actually 
already known to Euclid, about the 
parity property of integers are as 
follows:

even1 ± even2 ± even3 ± ... ± evenk = even, if any positive k.

odd1 ± odd2 ± odd3 ± ... ± oddk = even, if k is even.

odd1 ± odd2 ± odd3 ± ... ± oddk = odd, if k is odd.

odd1 × odd2 × odd3 × ... × oddk = odd, for any positive k.

even × odd1 × odd2 × ... × oddk = even, if there is at least 1 even.

PARITY
Error detection and correction method
(parity check)
One additional bit at the end of code is 1 if the 
number of 1’s is odd, otherwise it is 0.
EXAMPLE
Let two codes be 1101001001 and 
1001011011. Then the new codes will be

11010010011 and 10010110110.
For example, after transmission we know there 
is an error if transmitted code is

11010110011 and 10010110110.
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PARITY CHECK

000000011

001011001

100000010

101010101

000011000

100100110

110000011

011011101

001101001

Error detection and correction method (parity check)

PARITY CHECK

000000011

001011001

100000010

101010101

000011000

100100110

110000011

011011101

001101001

Error detection and correction method (parity check)
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PRIMALITY

A positive integer n > 1 that has only two 
distinct factors, 1 and n itself is called 
prime; otherwise, it is called composite.

SOME INTERESTING RESULTS
•There are infinitely many primes. [Euclid]
•Only one even prime: 2
•Two largest twin primes (p and p+2),[1995]

570918348×105120±1 and
242206083×238880±1. [11713 digits]

•It is not known : infinitely many twin primes?
•infinitely many pairs (p, p+2) with

p is prime and
p+2 a product of most two primes. 

[J.R.Chen]
•Prime triples (p, p+2, p+6) : (347, 349, 353)
•Prime triples (p, p+4, p+6) : (307, 311, 313)
•Only one prime triples (p, p+2, p+4) : (3, 5, 7)
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SOME INTERESTING RESULTS

Ancient Chinese mathematicians,
If p is a prime number, then p | 2p -2.

Example: 5 is a prime number, and 5 | 30.

But, there are some composites that satisfy this 
condition.
Example: 341=11×31 is not prime, 341 | 2341 -2.

SOME INTERESTING RESULTS
PROBLEM: IT IS NOT EASY TO TEST WHETHER OR 
NOT A LARGE NUMBER n IS PRIME.

NEEDS TO TEST UP TO n1/2

THE CURRENT BEST ALGORITHM FOR PRIMALITY 
TESTING NEEDS AT MOST

βc log log β (BIT OPERATIONS)

WHERE β IS A NUMBER OF BITS NEEDED FOR n
C IS A REAL POSITIVE CONSTANT. 
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MULTIPLICATIVITY
Fundamental Theorem of Arithmetic [Euclid]
Any positive integer n > 1,

n = p1
α1p2

α2...pk
αk  (unique)

where p1<p2<...<pk are primes and
α1, α2, ..., αk are all positive integers.

[Proved by Gauss, 1777-1855]
EXAMPLES
1999 = 1999 2000 = 24 × 53

2001 = 3 × 23 × 29 2002 = 2 × 7 × 11 × 13
2003 = 2003 2004 = 22 × 3 × 167
2005 = 5 × 401 2006 = 2 × 17 × 59
2007 = 32 × 223 2008 = 23 × 251

MULTIPLICATIVITY
PROBLEM:
IT IS DIFFICULT TO FACTOR A LARGE POSITIVE INTEGER (MORE 
THAN 100 DIGITS AT PRESENT) INTO ITS PRIME FACTORIZATION.
THE FASTEST FACTORING METHOD OF n

exp( c(log n)1/3 (log log n)2/3 ), (BIT OPERATIONS)

WHERE c = (64/9)1/3 ∼1.9

The 9th Fermat number F9 = 22 +1 (155 digits) was
completely factored in 1990.
The 12th Fermat number has still not completely been
factored , even though its five smallest prime factors
are known).

9
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SOME INTERESTING RESULTS
THE MOST RECENT RECORD [HERMAN TE RIELE,1999]

RANDOM NUMBER 155 DIGITS (512 BITS)

WRITTEN AS THE PRODUCT OF TWO PRIMES (78 DIGIT PRIMES)

102639592829741105772054196573991675900716567
808038066803341933521790711307779

AND
106603488380168454820927220360012878679207958
575989291522270608237193062808643

ADDITIVITY

Ch. Goldbach 1690-1764, proposed two conjectures

Every odd integer > 7 is the sum of 3 odd primes.
Every even integer > 4 is the sum of 2 odd primes.

EXAMPLES: 6 = 3+3
8 = 3+5

9 = 3+3+3 10 = 3+7 = 5+5
11 = 3+3+5 12 = 5+7
13 = 3+3+7 = 3+5+5 14 = 3+11
15 = 3+5+7 = 5+5+5 16 = 3+13 = 5+11

(The second conjecture implies the first.)

THE LITTLE GOLDBACH CONJECTURE

TERNARY GOLDBACH CONJECTURE
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Some results:
If a certain hypothesis (Riemann’s) is true, 
then every sufficiently large odd integer is the
sum of three odd primes.

Hardy & Littlewood, 1923

Every sufficiently large odd integer
can be written as the sum of three odd primes.

I.M. Vinogradov, 1937

Every sufficiently large even integer can be written
as the sum of a prime and a product of at most
two primes.

J.R. Chen, 1933-1996

ADDITIVITY

THREE-PRIME THEOREM

Goldbach partition of integer n, denoted by G(n), is

n = p1 + p2, n even and p1 < p2
or

n = p1 + p2 + p3, n odd and p1 < p2 < p3.

Examples: |G(100)| = 6
|G(101)| = 32
|G(1001)| > 1001.

ADDITIVITY
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1729 is the smallest positive integer expressible as a 
sum of two positive cubes in exactly two different 
ways, namely,

1729 = 13 + 123 = 93 + 103.
(1729 is also the third smallest Carmichael number).

Carmichael number, 1912 (CONJECTURED)
A composite number n that satisfies bn+1 ≡ 1 (mod n) 
for every positive integer b such that gcd(b,n) = 1.
There are infinite ly many Carmichael numbers.
Proved this conjecture in 1992, by W.Alford, G. Granville and 
C.Pomerance.

Examples: 561, 1105, 1729, 2465, 2821, …

ADDITIVITY
HARDY-RAMANUJAN TAXI NUMBER

1729 is the smallest positive integer expressible as a 
sum of two positive cubes in exactly two different 
ways, namely,

1729 = 13 + 123 = 93 + 103.
(1729 is also the third smallest Carmichael number).

Fourth powers, known to Euler (1707-1783),

635318657 = 594 + 1584 = 1334 + 1344.

ADDITIVITY
HARDY-RAMANUJAN TAXI NUMBER
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ALGEBRAIC
Some notations

N natural numbers { 1, 2, 3, … }

Z integers { …,-2, -1, 0, 1, 2, … }

Z/nZ all residue classes modulo n { 0, 1, …, n-1 }

Q rational numbers { a/b|a,b ∈ Z, b ≠ 0 }

R real numbers : algebraic numbers
transcendental numbers

C complex numbers { a+bi|a,b ∈ R, i=(-1)1/2 }.
Algebraic numbers :
the root of a polynomial equation with integer coefficients.
Some are rational numbers, some are irrational numbers.

ALGEBRAIC
GROUP

A group (G,*) is a nonempty set G of elements 
together with a binary operation *, such that
The following axioms are satisfied:

Closure: ∀a,b∈G,  a*b ∈ G.
Associativity: ∀a,b,c∈G,  (a*b)*c = a*(b*c).
Existence of identity: ∃e unique ∈G, ∀a∈G, a*e=e*a=a.
Existence of inverse: ∃b unique ∈G, ∀a∈G, a*b=b*a=e.

Commutative group (Abelian group: Niels Henrik Abel, 1802-1829)
if it satisfies commutativity: ∀a,b∈G, a*b = b*a.
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ALGEBRAIC
SEMIGROUP

A semigroup (G,*) with respect to the binary operation *,

is a nonempty set G of elements together with a 
binary operation *, such that the following axioms 
are satisfied:

Closure: ∀a,b∈G,  a*b ∈ G.
Associativity: ∀a,b,c∈G,  (a*b)*c = a*(b*c).

It is said to be a monoid with respect to the binary operation *
if it also satisfies

Existence of identity: ∃e unique ∈G, ∀a∈G, a*e=e*a=a.

ALGEBRAIC
Examples:

(Z, +) is an abelian group. (additive group)

(Q+, ×), (R+, ×) are abelian groups. (multiplicative group)

Definitions
Finite group finite number of elements
Infinite group infinite number of elements
Order of group the number of elements |G|
Subgroup A nonempty subset of group

under the same operation
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ALGEBRAIC
SUBGROUP

A multiplicative group (G,*).

a is an element of G.

The element ar form a subgroup of G,
called the subgroup generated by a.

A group G is cyclic if ∃a ∈ G such that
∀x∈G, x = ar for some integer r.

ALGEBRAIC
RING

A ring (A, ⊕, ⊗) is a set of at least two elements with two 
binary operations ⊕ and ⊗., which we call addition and 
multiplication, defined on A such that the following axioms 
are satisfied:
Closure under ⊕ : ∀a,b∈A,  a ⊕ b ∈ A.
Associativity under ⊕ : ∀a,b,c ∈A, (a ⊕ b) ⊕ c = a ⊕(b ⊕ c).
Commutative under ⊕ : ∀a,b∈A,  a ⊕ b = b ⊕ a. 
Zero: ∃0 unique ∈A, ∀a∈A, a ⊕ 0 = 0 ⊕ a = a.
Additive inverse –a : ∀a∈A, a ⊕ (-a) = (-a) ⊕ a = 0.
Closure under ⊗ : ∀a,b∈A,  a ⊗ b ∈A.
Associativity under ⊗ : ∀a,b,c ∈ A, (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).
Distributivity under ⊗ : a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c), ∀a,b,c ∈A.

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c), ∀a,b,c ∈A.
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ALGEBRAIC
RINGExamples:

(Z, +, ×), (Q, +, ×), (R, +, ×), (C, +, ×) are rings.

Definitions
commutative ring ∀a,b∈A, a⊗b = b⊗a.
ring with identity ∀a,1∈A, a⊗1 = 1⊗a = a.
integral domain commutative ring and

ab = 0 → a=0 or b=0.
division ring ring with identity 1≠0

and for each a≠0, a∈A,
ax=1 and xa=1
have solutions in A.

ALGEBRAIC
FIELD

A field denoted by (K, ⊕,⊗), is a division ring
with commutative multiplication.

COMMUTATIVE RINGS RINGS WITH IDENTITY

INTEGRAL DOMAINS

FIELDS

FINITE FIELD IS A FIELD THAT HAS A FINITE NUMBER OF ELEMENTS.
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ALGEBRAIC
EVARISTE GALOIS (1811-1832)

Theorem  GF
There exists a field of order q if and only if q is a 
prime power (i.e., q = pr) with p prime and r ∈N.
Moreover, if q is a prime power, then there is, up 
to relabelling, only one field of that order.

ALGEBRAIC

321044
210433
104322
043211
432100
43210⊕

EVARISTE GALOIS (1811-1832)

GF(5)

12344
24133
31422
43211
4321⊗


