PERFECT, AMICABLE, SOCIABLE NUMBER

DEFINITION

Let n be a positive integer. Let $(x_1,x_2,...,x_k)$ be k positive integers, all greater than 1, satisfying:

$$\mathbf{O}(x_1) = x_1 + x_2$$
.

$$\mathbf{O}(\mathbf{x}_2) = \mathbf{x}_2 + \mathbf{x}_3.$$

...

$$\mathbf{O}(x_k) = x_k + x_1.$$

Then the k positive integers form a sociable group with order k (k-cycle).

ARITHMETIC FUNCTIONS

PERFECT, AMICABLE, SOCIABLE NUMBER

DEFINITION

If
$$k = 1$$
, $\mathbf{O}(x_1) = x_1 + x_1 = 2x_1$, x_1 is called perfect number.

If
$$k = 2$$
, $\mathbf{O}(x_1) = x_1 + x_2 = \mathbf{O}(x_2)$, (x_1, x_2) is called an amicable pair.

The k integers, $x_1, x_2, ..., x_k$,

$$\mathbf{O}(\mathbf{x}_1)$$
 = $\mathbf{O}(\mathbf{x}_2)$ = ...= $\mathbf{O}(\mathbf{x}_k)$ = \mathbf{x}_1 + \mathbf{x}_2 +...+ \mathbf{x}_k , integers \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_k are called an amicable k-tuple.

PERFECT, AMICABLE, SOCIABLE NUMBER

EXAMPLES

the first four perfect numbers: 6, 28, 496, 8128

The first three amicable pairs: (220,284), (1184,1210), (2620,2924), (5020,5564)

The first three amicable triples: (1980,2016,2556), (9180,9504,11556), (21668,22200,27312)

etc...

ARITHMETIC FUNCTIONS

PERFECT, AMICABLE, SOCIABLE NUMBER

THEOREM (THE EUCLID-EULER THEOREM)

Let n be an even perfect number if and only if $n = 2^{p-1} (2^p - 1)$, where $2^p - 1$ is a Mersenne prime.

THEOREM (THABIT'S RULE FOR AMICABLE PAIRS)

Let $p=3\times 2^{n-1}-1$. Let $q=3\times 2^n-1$. Let $r=9\times 2^{2n-1}-1$. If p, q and r are primes, then $(2^n\times p\times q, 2^n\times r)$ is amicable pair.

ARITHMETIC FUNCTIONS PERFECT, AMICABLE, SOCIABLE NUMBER

THEOREM (EULER'S RULE FOR AMICABLE PAIRS)

Let n be a positive number, and choose 0 < x < n such that $g = 2^{n-x} + 1$. if $p = (2^x \times g) - 1,$ $q = (2^n \times g) - 1,$ $s = (2^{n+x} \times g^2) - 1,$ are primes, then $(2^n \times p \times q, 2^n \times s)$ is amicable pair.

ARITHMETIC FUNCTIONS

PERFECT, AMICABLE, SOCIABLE NUMBER

THEOREM

Given an amicable pair $(M,N) = (a \times u, a \times p)$, with gvd(a,u) = gcd(a,p) = 1, and p is prime.

If a pair of primes (r, s) with p < r < s, and $gcd(a, r \times s) = 1$, exists, satisfying the bilinear Diophantine equation

 $(r - p)(s - p) = (\mathbf{O}(a) \times \mathbf{O}(u)^2)/a$ and a third prime q exists, with $gcd(a \times u, q) = 1$ and q = r + s + u.

then $(a \times u \times q, a \times r \times s)$ is amicable pair.

φ-function (Euler's)

DEFINITION

Let n be a positive integer. Euler's (totient) ϕ -function, $\phi(n)$ is defined to be the number of positive integers $k \le n$ which are relatively prime to n:

$$\phi(n) = \sum_{(1 \le k < n, \gcd(k,n) = 1)} 1.$$

EXAMPLE

n	$\phi(n)$	n	$\phi(n)$	n	$\phi(n)$
1	1	5	4	9	6
2	1	6	2	10	4
3	2	7	6	100	40
4	2	8	4	101	100

ARITHMETIC FUNCTIONS

φ-function (Euler's)

THEOREM

Let n be a positive integer. Then

 $\phi(n)$ is multiplicative. i.e., $\phi(mn) = \phi(m)\phi(n)$.

If p is a prime, then $\phi(p) = p - 1$. More generally, if n is a prime power, p^u , then $\phi(p^u) = p^u - p^{u-1}$.

If n is a composite, then $\phi(n) = p_1^{u1}(1-(1/p_1))p_2^{u2}(1-(1/p_2)) \times ... \times p_k^{uk}(1-(1/p_k))$ with $n = p_1^{u1}p_2^{u2}...p_k^{uk}$ (prime factorization form).

λ-function (Carmichael's)

DEFINITION

Let n be a positive integer. Carmichael's λ -function, $\lambda(n)$ is defined as follows

 $\lambda(n) = \phi(n)$ if n is a prime.

 $\lambda(p^u) = \phi(p^u) \qquad \text{for } p = 2 \text{ and } u \leq 2$ and for $p \geq 3$.

 $\lambda(2^{\mathrm{u}}) = \phi(2^{\mathrm{u}})/2$ for $\mathrm{u} \ge 3$

$$\begin{split} &\lambda(n) = lcm(\lambda(p_1^{\mathrm{ul}}),\,\lambda(p2\mathrm{u2}),\,...,\,\lambda(p_k^{\mathrm{uk}})),\\ &with\; n = p_1^{\mathrm{ul}}p_2^{\mathrm{u2}}...p_k^{\mathrm{uk}}\; (prime\; factorization\; form). \end{split}$$

ARITHMETIC FUNCTIONS

λ-function (Carmichael's)

EXAMPLE

n	$\lambda(n)$	φ(n)
1	1	1
	1	1
2 3	2	2
	2	2
4 5	4	4
6	2	2
6 7	6	6
8	2	4
9	6	6
10	4	4
100	20	40
101	100	100
102	16	32

μ-function (Mobius)

DEFINITION

Let n be a positive integer. Mobius μ -function, $\mu(n)$ is defined as follows

$$\begin{array}{ll} \mu(n) & = 1 & \text{if } n = 1, \\ & = 0 & \text{if } n \text{ contains a squared factor,} \\ & = (-1)^k & \text{if } n = p_1 p_2 ... p_k. \end{array}$$

ARITHMETIC FUNCTIONS

μ-function (Mobius)

EXAMPLE

n	$\lambda(n)$	φ(n)	μ(n)
1	1	1	1
2	1	1	-1
3	2	2	-1
4	2	2	0
5	4	4	-1
6	2	2	1
7	6	6	-1
8	2	4	0
9	6	6	0
10	4	4	1
100	20	40	0
101	100	100	-1
102	16	32	-1

μ-function (Mobius)

THEOREM

Let n be a positive integer. Then

 $\mu(n)$ is multiplicative. i.e., $\mu(mn) = \mu(m) \mu(n)$.

Let
$$v(n) = \sum_{(d \mid n)} \mu(d)$$
. Then $v(n) = 1$ if $n = 1$, $= 0$ if $n > 1$.

ARITHMETIC FUNCTIONS

μ-function (Mobius)

THEOREM

THE MOBIUS INVERSION FORMULA

If \boldsymbol{f} is any arithmetic function and

$$\text{if } g(n) = \sum_{(d \mid n)} f(d),$$

$$\mu(n) = \sum\nolimits_{(d \mid n)} \mu(n/d) \ g(d) = \sum\nolimits_{(d \mid n)} \mu(d) \ g(n/d).$$

THE CONVERSE OF THE MOBIUS INVERSION FORMULA

If
$$f(n) = \sum_{(d|n)} \mu(n/d) g(d)$$
,

then
$$g(n) = \sum_{(d|n)} f(d)$$
.

$$\phi(n) = \sum_{(d|n)} (\mu(d)/d)$$