2110355 FORMAL LANGUAGES AND
AUTOMATA THEORY

INTRODUCTION
LOGIC SET RELATION FUNCTION

Athasit Surarerks, Or. en Inf.

DESCRIPTION

Studies concepts of grammars, automata, languages,
computability and complexity ; the relationship between
automata and various classes of languages; Turing machine
and equivalent models of computation, the Chomsky
hierarchy, context-free grammar, push-down automata,
etc.; pumping lemmas and variants, closure properties and
decision properties; parsing algorithms.




EVALUATION

+ Homework 15 %
+ Quiz 20 %
+ Mid-Term examination 30 %
+ Final examination 35 %

REFERENCES

« Introduction to Languages and Theory of
Computation(2™ ed.) John C. Martin

+ Introduction to Computer Theory (2 ed.) Daniel I.
A. Cohen

+ Discrete Mathematics and its Applications (4t" ed.)
Kenneth H. Rosen

+ Languages and Machines: An Introduction to the
Theory of Computer Science (2" ed.) Thomas A.
Sudkamp




BACKGROUND

Charles Babbage

1791-1871

+ Created the first difference

engine (producing the members of the
sequence n? + n + 41 at the rate of about
60 every 5 minutes)

+ The 1st drawings of the

analytical engine (describes five

logical components, the store, the mill, the
control, the input and the output)

eThe construction of modern computers,
logically similar to Babbage's design




Kurt Godel

1906-1978

Proved that there was no
algorithm to provide proofs
for all the true statements
in mathematics.

Universal model for all algorithms.

VARIOUS VERSIONS

OF A UNIVERSAL ALGORITHM MACHINE

¢ Andrei Andreevich Markov 1856-1922

o Emil Post 1897-1954
+ Alonzo Church 1903-1995
+ Stephen Kleene 1909-1994
+ John von Neumann 1903-1957

¢ Alain Turing 1912-1954




Alain Turing

1912-1954

Computing machinery and intelligence

estudied problems which
today lie at the heart of
artificial intelligence.
eproposed the Turing Test
which is still today the test
people apply in attempting
to answer whether a
computer can be intelligent.

Warren McCulloch & Walter Pitts

neurophysiologists

Constructed for a “neural net”
was a theoretical machine of
the same nature as the one
Turing invented.

Modern linguists

Investigated a very similar subject

eWhat is language in general ?
eHow could primitive humans have developed language ?
eHow do people understand it ?
eHow do they learn it as children ?
eWhat ideas can be expressed, and in what way ?
eHow do people construct sentences from the idea s in their minds ?




Noam Chomsky

Massachusetts Institute of Technology

Created the subject of
mathematical models
for the description of
languages to answer
these questions.

MAIN TOPIC

We shall study different types of
theoretical machines that are
mathematical models for actual
physical processes.
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MAIN CO USIONS

" this can be done or it can never be done.”




AGENDA

+ Regular languages

o DETERMINISTIC STATE MACHINES

+ TRANSITION GRAPHS

o NONDETERMINISTIC STATE MACHINES

+ Context-Free languages
¢ PUSH-DOWN AUTOMATA
¢ TURING MACHINES

+ Context-sensitive languages
+ Recursive languages
¢ Recursively enumerable languages

BACKGROUND
KHOWLEDGE

¢ Logic

o Set Relation & function

¢ Theory & methods of proof
+ Asymptotic notation




SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

Organon: the first treatise on logic.

The fundamental elements of this logic
are terms and arguments are evaluated

as good or bad depending on how the
terms are arranged in the argument.
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SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

There are four different types of Syllogistic
arguments used to describe things with logic.

e All A are B (universal affirmative)

e No A are B (universal negative)

e Some A are B (particular affirmative)

e Some A are not B (particular negative)

SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

There are four different types of Syllogistic
arguments used to describe things with logic.

e All cats are animals.

e No A are B (universal negative)

e Some A are B (particular affirmative) #
e Some A are not B (particular negative)
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SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

There are four different types of Syllogistic
arguments used to describe things with logic.

e All cats are animals.

e No cats are plants.

e Some A are B (particular affirmative) &
e Some A are not B (particular negative)

SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

There are four different types of Syllogistic
arguments used to describe things with logic.

e All cats are animals.

e No cats are plants.

e Some animals are cats. ’
e Some A are not B (particular negative)
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SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

There are four different types of Syllogistic
arguments used to describe things with logic.

e All cats are animals.

e No cats are plants.

e Some animals are cats.

e Some animals are not cats.

SYLLOGISTIC REASONING

Aristotle (384-322 B.C.)

In fact in Prior Analytics Aristotle proposed the now
famous Aristotelian syllogistic, a form of argument
consisting of two premises and a conclusion.
His example is:-
*Every Greek is a person
*Every person is mortal

*Every Greek is mortal

This does not facilitate large compound formulas, hoWever.
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DEDUCTIVE REASONING

Euclid of Alexandria (325-265 B.C.)

Thirteen Books of Elements:
Axiom-Definition-Theorem-Proof

e BOOK VII-Proposition2-3: Euclid’s
algorithm for computing the greatest
common divisor

e BOOK IX-Proposition20: infinitely many
primes

e BOOK IX-Proposition21-29: Properties of
parity of integers

e BOOK IX-Proposition36: Perfect numbers

DEDUCTIVE REASONING

Euclid of Alexandria (325-265 B.C.)

Thirteen Books of Elements:
Axiom-Definition-Theorem-Proof

The style of Euclid’s work
has become the
standard for formal
mathematical writing up
to the present day.
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MODAL LOGIC

Chrysippus of Soli (279-206 B.C.)

Developed a logic based on whole propositions

e Every proposition is either true or
false.

e The truth of compound
propositions depends on the truth
or falsity of the component parts.

e The foundations for the truth-
functional account of logic

e Modal logic

COMPOUND LOGIC

Claudius Galenus: Galen of Pergamum (129-199 A.D.)

Developed a theory of compound
categorical syllogis

e Greek doctor

e Introducing the idea of opposites
to treat ilinesses
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ITALIAN PHILOSOPHER

Ancius Manlius Severinus Boethius (480-524 A.D.)

Translated and wrote commentaries on the
work of Aristotle and Chrysippus.

SYMBOLIC LOGIC

Gottfried Wilhelm von Leibniz (1646-1716 A.D.)

Invented the first artificial language
for logic.

The fundamental theorem of his
metaphysics of concepts
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PROPOSITIONAL LOGIC

George Boole (1815-1864 A.D.)

Invented Boolean algebra

e The Mathematical Analysis of Logic
e The Laws of Thought

PROPOSITIONAL LOGIC

George Boole (1815-1864 A.D.)

A proposition is a statement that is either true or false,
but not both.

Example: propositions

Every Greek is person. p
Every person is mortal. q
Every Greek is immortal. r

Propositions p and ¢ are true, but 7 is false.

17



PROPOSITIONAL LOGIC

Augustus De Morgan (1806-1871 A.D.)

Invented & traduced the term of
“mathematical induction”

e De Morgan's article
Induction (Mathematics) in the Penny
Cyclopedia (1838)

e introduced De Morgan's laws
and his greatest contribution is as a

reformer of mathematical logic. ‘? H

PROPOSITIONAL LOGIC

Augustus De Morgan (1806-1871 A.D.)

Invented & traduced the term of
“mathematical induction”

EXAMPLE
It is raining today.
It is cold today.
It is not the case that it is raining or is }r

cold today. %

Today it is not cold and it is not raining. I v I
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PROPOSITIONAL LoGic

+ Identifying logical form
+ Statements

¢ Compound statements
+ Negation, Conjunction &
Disjunction

+ Exclusive or

+ Applications

+ Conditional statements
+ Exercises

Logical ForM
IDENTIFYING LOGICAL FORM

Example
If “Automata” is easy or I study hard,
then I will get an A in this course.

Riiustrate this sentence by a logical form

which alphabet is usually used to represent
their components.

puenotes “dutomata” is easy.
q denotes I study hard.
raenotes [ will get an A in this course.

If » or ¢4, then -
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Logical ForlM
Definition PROPOSITION

A proposition is a statement that is either true or false but not hoth.

Examples
Budapest is the capital of Romania.

Five plus four equals nine.

Example He is a student.
The truth or falsity of this statement Tn “T“

Logical ForM
Definition NEGATION
Let » be a proposition. The statement
“Itis not the case that p.”
is another proposition, called the negation of p.
The negation of » is denoted by - p, read “not p”.

Example
p denotes “7today is Sunday'.

Then,

“It is not the case that today is Suna"ay" is hegted by -
The truth or falsity of the 2" statement OPPOSITE
depends on the first one. TRUTH VALUE

20



TRUTH VALUE I.ngical ForM

NEGATION
DEFINITION

The negation of » has opposite truth value from p.

TRUTH TABLE
p -p
T F
F T

Logical ForM
Definition CONJUNCTION

Let » and 4 he propositions. The compound proposition
“paml g” (conjunction of p and q)

denoted hy p 1, Is the statement that is true

when hoth » and 4 are true and is false otherwise.

Example
p denotes “7oday is Sunda

q tenotes “johin goes to schow

Then,
“Today is Sunday and John goes to school” IS denoted by p(;. FALSE

21



TRUTH VALUE I.ngical ForM

DEFINITION CONJUNCTION

The conjunction of » and 4, is true when, and only
when, both » and ; are true.

- o] (O
- o] = o] (Q

Logical ForM
Definition DISJUNCTION

Let » and 4 he propositions. The compound proposition
“pOrq” (disjunction of p and q)

denoted hy p(1;, is the statement that is false

when hoth » and ; are false and is true otherwise.

Example
p Uenotes “Diana goes to scfool”. FALSE
q denotes “johin goes to schoy(-  TRUE
Then,

“©iana goes to school or John goes to school” IS denoted by pOg. TRUE

22



TRUTH VALUE

Looig erl
DI
DEFINITION
The disjunction of » and ¢, is true when at least
one of p or g is true.
p g pq
T T T
T ; T
F T T
F F F
lngical ForM
MORE GENERAL COMPOUND
Logical connectives (ordered) STATEMENTS
*Negation
<Conjunction, Disjunction
EXAMPLE

(1) Itis raining but it is not cold.
(2] Itis neither raining nor colil.

Lee  p-‘nisraining’, M pH g
q ="tis colu”. 2) -p+ ¢
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TRUTH VALUE Louical ForM

MORE GENERAL COMPOUND

DEFINITION STATEMENTS

A propositional form Is an expression made up of
propositions (p,;....) and logical connectives.

EXKAMPLE =1 — oo
EEIHHHE HE
F T T T
F ¥ T I
lngical ForM
R S TATENATS
EXAMPLE
A propositionis either true or faise,
hut not hoth.

Let D ="Rpropesitionis true”,
q ="“Aproposition is false”.

L. p+t ¢ UO(=pUg)
2. (pUq) I (pUyg)
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TRUTH VALUE

DEFINITION

Exclusive or, denoted hy O, means “or hut not hoth”.

Logical ForM
EXCLUSIVE OR

p q pO
T T F
T F T
F T T
F F F
TRUTH VALUE i
Logicat ForM
DEFINITION

Exclusive or, denoted by [, means “or hut not hoth”.
TRANSLATE » (I ¢ INTO SYMBOL

lpOg)+ [pOg)

Pla|lpOgq-lpOqpOqllp0glt [pOgl)| pOgq
TIT| T F T F F
TIF| F T T T T
FIT]| F T T T T
FIF| F T F F F
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TRUTH VALUE I.ngical ForM

DEFINITION EXCLUSIVE OR

Exclusive or, denoted hy O, means “or hut not hoth”.
TRANSLATE » (I ¢ INTO SYMBOL lpOg)F [pOgl

DEFINITION

Two propositions are called logically equivalent,
Usually denoted by -,
If, and only if, they have identical truth values
for each possihle substitution of propositions
for their statement variables.

EXAMPLE: 0 ¢ - [p Og) [+ [p Oy

TRUTH VALUE

Logical ForM
P 0 P-0 1 LOGICALLY EQUIVALENT
T T T
T F F
F T F
F F T

DEFINITION

Two propositions are called logically equivalent,
Usually denoted by -,
If, and only if, they have identical truth values
for each possihle substitution of propositions
for their statement variables.

EXAMPLE: 0 ¢ - [p Og) [+ [p Oy
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TRUTH VALUE -
Logical ForM
TAUTOLOGY

DEFINITION

Atautology is a propositional form that is always true.
EXAMPLE: » 0 g = [pOg)l 3+ [p Oyl
DEFINITION

A contradiction is a propositional form that is always false.

DEFINITION

A propositional form that is neither tautology nor
contradiction is called a contingency.

Rpplication on circuitS
COMPUTER ADDITION

Gonsider the question of designing a circuit to produce
the sum of two hinary digits » and 5.

p q carry sum
1 +1 = 1 0
1 +0 = 0 1 1. trUE
0 +1 = 0 1
0 + 0 = 0 0 0 < FALSE
p q Carry Sum
1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 0
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Rpplication on circuitS
COMPUTER ADDITION

Gonsider the question of designing a circuit to produce
the sum of two hinary digits » and 4.

p q carry sum
1 +1 = 1 0
1 +0 = 0 1 1. trUE
0 +1 = 0 1
0 +0 = 0 0 0 - FALSE
p q Carry = pdg| Sum - pQOgq
1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 0

Rpplication on circuitS
COMPUTER ADDITION

Gonsider the question of designing a circuit to produce
the sum of two hinary digits » and 5.

| p | q |Carry~=qu| Sum«:qu|

CARRY - [pandg) SUM - [porq)and(not(,and ))

28



Rpplication on circuitS
COMPUTER ADDITION

Gonsider the question of designing a circuit to produce
the sum of two hinary digits » and 4.

| p | q |Carry~=qu| Sum - pOgq |
CARRY - (pandg) SUM - [porg)and(not(pandg))
p \
and CARRY
q J

Rpplication on circuitS
COMPUTER ADDITION

Gonsider the question of designing a circuit to produce
the sum of two hinary digits » and 5.

| p | q |Carry~=qu| Sum - pOgq |
CARRY - (pandg) SUM - [porg)and(not(pandg))
p \

and CARRY
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Theorem: Logical Equivalences, S“mmarv

given any propositions ,,; and -, atautology T
and a contradiction C, the following logical equivalences hold:

<Commutative laws: pg = qlp plg = qlp
-Associative laws: O = pligt
) - pgly)
-Distrihutive laws: pgr)  [pg)py)
pgr) = [pOg)pi)
-ldentity laws: plTl = p plC = p
<Domination laws:{universal bound laws) p(0T ~ T pC = C
ldempotent laws: plp = p plp = p
Negation laws: pBp=T pEp=C
Double negative laws: - [—|p] ep
-De Morgan's laws: ) = ~pB g
- lpg) = =pE ¢
Ahsorption laws: ppg) = p ppg) = p

1.Show that (pOq)O(p= q)O(-pq) <
(pOq) is a tautology.

2.Show that - (-pO(plqg))dq is a
tautology.

3.Verify the distributive law:

pO(q0r) = (pOq)C(pLr).
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Conditional Statement$S
IMPLICATION

Let 5, ; be propositions. A statement of the form
If p then ¢, denoted by p — ¢

where piscalled Aypothesis

qis called conclusion.
The statement is false when » is true and  is false.

Example
If 3.201 is divisible by 6, then 3.2011s divisible by 3.

The truth value of this sentenceis TRUE

Conditional s‘*‘.‘rﬁm&'}fnsu
DEFINITION

Let », 7 be propositions.

The conditional of s by p IS “If p then ¢” or “p implies ¢”
and is denoted by » —. .

Itis false when p is true and 4 is false, and true otherwise.

p-gq

-n-n—l—l‘D
- - .- Q)

T
F
T
T
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EXAMPLE IMPLICATION
Constructatruthtableof (p - ¢) - - p.

P | q -p -q ||[pG gf|lpG gl--p
T T F F T F

T F F T T F

F T T F F T

F F T T T T

Conditional Statement$S
CONTRAPOSITIVE

The contrapositive of a conditional statement of the form

DEFINITION

“If p then ¢”is

“If = q then - p”.

Symhbolically, itis— ¢ - = p.

p q ~q--p
T T
T F
F T
F F

A conditional statement is logically
equivalent to its contrapositive.

32



DEFINITION CONTRAPOSITIVE
The contrapositive of a conditional statement of the form
“If p then ¢”is

“If = q then - p”.
Symhbolically, itis— ¢ - — p.

EXAMPLE
A conditional statement
IF today is Monday, tomorrow is Tuesday.
The contrapositive
IF tomorrow is not Tuesday, today is not Monday.

o CONVERSE

The converseofp . gisg - p.
+ INVERSE

Theinverseofp - gis-p - - g.
o ONLYIF

p only if g means If - g then - p.

EXAMPLE
STATEMENT

If John can swim across the lake, he can swim to the island.
CONVERSE
If John can swim to the island, he can swim across the lake.

33



o CONVERSE

The converseofp . gisg - p.
+ INVERSE

Theinverseofp - gis-p - - g.
o ONLYIF

p only if g means If - g then - p.

EXAMPLE
STATEMENT

INVERSE
If John cannot swim across the lake, he cannot swim to the island.

« ONLYIF
EXAMPLE ¢ P onlvifgmeansli- gthen - p.
ONLY IF-STATEMENT

John will break the world’s record for the mile run only if
He runs the mule in under four minutes.

MEANING
. IF John does not run the mile in under four minutes,
then he will not break the world's record.
. If John breaks the world's record,
then he will have run the mile in under jour minutes.
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Conditional Statemem$
DEFINITION NECESSARY & SUFFICIENT

Given » and 4 are statements.
pis asufficient condition for ; means
“If p then ¢”.

p is anecessary condition for g means
“If - p then - q"

or<If 4 then p”.

CONSEQUENTLY,

p is anecessary and sufficient condition for ; means
“p 1f, and only if, ¢~
P < 4.

BICONDITIONAL OF p AND ¢

Valid & invalid argumem$S
DEFINITION

Definition
An argument is a sequence of statements. All statements excluded
the final one are called “hypotheses”, the final statement is called
“conclusion”. A argument is the form:

pigirie O f (readtherefore)

An argument is valid means that if all hypotheses are true, the
conclusion is also true.
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Valid & invalid argumem$S
EXAMPLE OF VALID FORM

EXAMPLE
Given anargument p (g Or»); - »; O p Oqg VALID
p g r |gr|pOd(gdr)| =r | pOQg |TRUE
T T T T T F I
T T F T T T (r
T F T T T F T
T F F F T T (T
F T T T T F
F T F T T T T
F F T T T F F
F F F F F T F
SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS

If it is raining, John does not go to school.
Now, it is raining.
CONCLUSION: John does not go to school.

p-q;plgqg
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SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS
MODUS TOLLENS

If it is raining, John does not go to school.
Now, John goes to school.
CONCLUSION: It is not raining.

p-q;qlh p

SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS
MODUS TOLLENS

DISJUNCTION ADDITION

pUplgqg
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SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS
MODUS TOLLENS

DISJUNCTION ADDITION
CONJUNCTIVE SIMPLIFICATION

pUglUp

SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS CONJUNCTIVE ADDITION
MODUS TOLLENS

DISJUNCTION ADDITION
CONJUNCTIVE SIMPLIFICATION

p;q U plg
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SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS CONJUNCTIVE ADDITION
MODUS TOLLENS DISJUNCTIVE SYLLOGISM
DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

Either Diana or John goes to school.
Diana does not go to school.
CONCLUSION: John goes to school.

plUg;-~qUp

SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“ﬂWill!l arguments are valid:

MODUS PONENS CONJUNCTIVE ADDITION
MODUS TOLLENS DISJUNCTIVE SYLLOGISM
DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION
HYPOTHETICAL SYLLOGISM

p-qg,q->rlp-r
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SummarY

Theorem : valid arguments,
given any propositions p,; and -,
the m“llWill!l arguments are valid:

MODUS PONENS CONJUNCTIVE ADDITION
MODUS TOLLENS DISJUNCTIVE SYLLOGISM
DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

HYPOTHETICAL SYLLOGISM
DILEMMA

pUg;p->r;q->rdr

1.Show that (p-~q) = (-p0q) is a tautology.
2.Show that (pqg) - (pOq) is a tautology.

40



ConsistenT

DEFINITION

A set of propositional expressions is consistent
if there is an assignment of truth values to
the variables in the expressions that makes

each expression true.
EXAMPLE

1.p0Oq
2.p > r

3.q - -r
4.(rds) - q

ConsistenT

EXERCISE
Show the truth values of each variable that this

system is consistent if possible.
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ConsistenT

EXERCISE
Suppose that p,q,r is true and s is false.
IS this system consistent ?

L 2 Find the negations for these statements.

e This computer program has a logical error in the first 10
lines or it is being run with an incomplete data set.

e This exercise is easy but I cannot solve it in 5 minutes.

e The dollar is at an all-time high and the stock market is
at a record low.

OWhich statement forms are tautologies by using
truth tables.
e (pOq@)OC=pOMP I q))
e(p= g)0(-p0OQ)
e ((-pU0qg)0@ON) g
e(-px q)0(p 3 q))

42



OShow that these statement forms are
logically equivalences:

e (p - q)p q

* (p0g)= g P

e (pUg)((=pL(glir))(pLr) qlr

e (ptg)tr pL(g0r)

loﬂlc

Consider the following statements:
All students go to school.
John is a student.
Diana is a student.

Of course we can conclude that
John goes to school.
Diana goes to school.

43



loﬂlc

The statement "“All students go to school” has two
parts:

Variable students (denoted by variable x)

“go to school” (the predicate)

This statement can be denoted by P(x), where P
denotes the predicate “go to school”.

P(x) is said to be the value of the propositional
function P at x.

Once a value has been assigned to the variable x,
the statement P(x) becomes a proposition and has
a truth value.

loﬂlc

Predicate : go to school. P
Variable : student X
Constant : John a
: Diana b
P(a) is true.
P(b) is true.
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PREDICATE LoGiic

+ Predicate
« Quantifiers
+ Negation

¢ Universal Conditional
Statements

¢ Universal Modus Ponens
¢ Universal Modus Tollens

PREDICATE LoGiic

QUANTIFIERS

DEFINITION
The universal quantification of P(x) is
the proposition
“P(x) is true for all values x in the universe of
discourse”.

It is denoted by 0Ox P(x).

DEFINITION
The existential quantification of P(x) is the proposition
“There exists an element x in the universe of discourse
such that P(x) is true”.
It is denoted by [x P(x).
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PREDICATE LoGiic

EXAMPLE
All integers are Real numbers.
Some integers are not odd.

These statements can be expressed as:
Ox(I(x) - R(x))
X(I(X)Z O(X)).
Where I(x) denotes “x is integer”
R(x) denotes “x is real”, and
O(x) denotes “x is odd".

PREDICATE LoGiic

NEGATION

DEFINITION
The negation of a statement OxP(x) is
logically equivalent to a statement

X —IP(X).

DEFINITION
The negative of a statement [x P(x) is logically
equivalent to a statement

Ox =P(x).
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PREDICATE LoGiic

UNIVERSAL CONDITIONAL STATEMENTS

Consider a statement Ox P(x) - Q(x).

CONVERSE

Its contrapositive is Ox = Q(x) - =P(x).
INVERSE

Its inverse is Ox =P(x) - =Q(x)..
CONVERSE

Its converse is Ox Q(x) - P(x).

PREDICATE LoGiic

UNIVERSAL MODUS PONENS

Consider a statement Ox P(x) - Q(x).
For a particular e,
P(e) is true,

therefore Q(e) is true.
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PREDICATE LoGiic

UNIVERSAL MODUS TOLLENS
Consider a statement Ox P(x) - Q(x).
For a particular e,
- Q(e) is true,

therefore - P(e) is true.

PREDICATE LoGiic

RULES OF INFERENCES

Universal instantiation

OxP(x) OP(c) if c O U.
Universal generalization

P(c) for an arbitrary ¢ O U OO xP(x)
Existential instantiation

XP(x) O P(c) for some element c O U
Existential generalization

P(c) for some element c O U 00O xP(x)
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EXAMPLE

PREDICATE LoGiic

All students in this class are perfect.
Some students like "Automata”.
Some perfect people like “"Automata”.
Let W be a set of people.
S(x) be “x is a student in this class”.
P(x) be “x is perfect”.
A(x) be “x like ‘Automata’ ”.

(xow  (S(x) - P(x))
[kow  (S(x) OA(X))
[(kow  (P(x) OA(X))

stT rELarlo v 2 FUNC1ION
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+ Set & Properties
+ Cartesian Product
+ Binary Relation

+ Function

e Injective

GOIIIGIIIS e surjective
¢ bijection

+ Equivalence Relation

¢ Exercises

Some pernmonS

+ Aiscalled a subset of B, denoted by A (1 B, if, and only if,
LI, ifx CAthenx O B.
« Aisaproper suhset of B, if, and only if,
ACBandA=B.
« Operations on sets
e TheunionofAandB,AC B istheset{x|Xx JAorxOB}.
* TheintersectionofAandB,A ~ B,istheset{x|x CAandx JB}.
* Thedifference of Bminus A, B-A istheset{x Ix CAandxCB}.
* The complementof A, A, isthe set {x 0 U|X OA}. (U= UNIVERSEL
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of sets
THEOREM
Given sets A,B and C.
-Commutative laws: A~B=BnA ACB=BOA

-Associative laws: (RnB)InC=An(BNC)

-Distributive laws: AC(B~C)=(ACBIN(RCC)
ldempotentlaws: AnU=A ACU=U

De Morgan's laws: (RCBI°=A° nB® (AnBlc=AcB°
+Alternative representation for set difference A-B=AnB°

Some pernmionS
DEFINITION CARTESIAN PRODUCT

Given sets A, A, A;, ..A,. The Cartesian products of AA,, A;, ..A,,

denote by A, <A, xA; x ... x A,, is the set
{[31,32, as, ...,an] | 31D A" a2|:| Az. 33D ns. unny anD AII }.

letA={123},B={ah}andC={xy},

the Cartesian products of ABand ¢ is
{(,ax), (1ay), (1hx), (1hy),
(2a)x),(2,a)),(2bx),(2hY),
(3.2, (3ay), (3h)), (3hyl}.
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SomenernmionS
MUTUALLY/PAIRWISE DISJOINT

DEFINITION

SetsA,A, A, ...A, are Mutually disjoint
(pairwise or nonoverlapping)

I}ff anytwo sets A,A, with distinct subscripts have any
elements in common, precisely A, ~ A;= empty set (.

SomenernmionS
SET PARTITION
DEFINITION
A collection of nonempty sets {AA,, A,, ..A,} is a Partition of a
seth [/},

“A=A0A,CA;C_CA,and
*A A, A, ..., are mutually disjoint.
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Some pernmonS
POWER SET
DEFINITION

Give a set A, the power set of A, denoted hy P (R),
is the set of all subsets of A.

THEOREM

*For all sets A and B, if A 0 B, then (P(A) O P(B).
«For allintegers n > 0, if a set A has n elements,

then (PR has 2" elements.

RewanionS
DEFINITION BINARY

Let A.B he sets. A hinary relation Q{jrom AtoBis asubset of
the Cartesian product AxB. Given (x,y), ordered pair, inA xB,

xis related toy by R writtenx Ry, i/ WWIOR,
EXAMPLE
The congruence modulo 2 relation
The relation R from Zto Zis defined as follows;

for all (xy) OZ=Z, xRy iff x-vis even.
Example, 6 K2, 120 K36 etc.
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ReunmionS
DEFINITION FUNCTION

Afunction 7 fromAto Bis arelationfromAtoB, 7 :A_.B,
that satisfies the following properties:
1. For every XA, there exists yOIB such that ixy)0 7.
2. ForallxCA andy,20B,
If )0 Fand k0 Fthen y=1

For eyl O 7, we usually write y = 7 () = image of x under Z;
and x is called pre-image of y under 7-

Ris called domain of 7.

B is called co-domain of 7

The set of all images of Zis called range of 7

RewanionS
COMPOSITIONS OF FUNCTIONS
DEFINITION
A 'llllﬂlilllljl; g fromAtoBisafunctionfromAtoB.
[+ gixd = 00 + i),
[f )X = /) glx)

The composition of the functions /and g, denoted by fo g
is lefined as

[fo g = flg(x))
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RewamionS

FUNCTION
ARROW DIAGRAM
Afunction 7 fromAtoB.
Fin=h
a Fin=a
_— ] Fi3)=h
‘ d Fim=e
e
A B
FuncrionS
INJECTIVE

DEFINITION

Afunction 7 from Ato B is injective (or one-to-one)
iff for all elements x and y in A,

if Fixl=Fiylthenx=y.
Or, equivalently,

|
—
ifx=ythen 7ixl= Fiyl. ‘

A B
This function is not One-to-one.
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Funcrion$
INJECTIVE
DEFINITION
Afunction 7 from Ato B is injective (or one-to-one)
iff forall elements x and y in A,
if Fixl=T1ylthenx=y.

|
Or, equivalently, -
ifx =y then Ftxl = Fyl, N

A B
This function is One-to-one.

FuncrionS

SURJECTIVE
DEFINITION

Afunction 7 from A to B is surjective [or onto)
iff foranyelementyinB,

itis possible to find a
an element xin A —
such that c
v=Fixl. ‘ d

e

This function is not Onto: ¢ [ B but no element x in A that F{xl=c.
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FuncrionS

SURJECTIVE
DEFINITION
A function f fromAto B is surjective (or onto)
iff foranyelementyinB,
s possibl o i e
tXi —
sachibat P
v= Finl. ‘
e
A B
This function is Onto.
FuncrionS
DEFINITION BIIECTION

A one-to-one correspondence [or bijection) 7
from A to B is a function that is hoth one-to-one and onto.

><
1
A B

This function is not a hijection.
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FuncrionS

DEFINITION BUECTION

A one-to-one correspondence [or bijection) 7
from A to B is a function that is hoth one-to-one and onto.

a
T~}
— ¢

e

A B

This function is not a hijection.

FuncrionS

DEFINITION BUECTION

A one-to-one correspondence [or bijection) 7
from A to B is a function that is hoth one-to-one and onto.

<]
—

A B
This function is hijection.
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ReuanionS
THE INVERSE OF A RELATION

DEFINITION

Let X_he a relation from A to B. Define the inverse relation,
denoted by R-'from B to A as follows:

R1={tyx) | MO R }.

RewanionS
PROPERTIES

DEFINITION

Let X_be a hinary relation on A.
® R isreflexive iff forallxORA X R x.
® R issymmetric i/ forallxyCA ifx R ytheny R k.
® R istransitive iff forallxyzOA,

iix R yandy R zthenx R
EXAMPLE

The hinary relation “/ess than ”is transitive.
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RetarionS
EQUIVALENCE
DEFINITION
R _is a equivalence relation on A iff
® [ isahbinaryrelationonA.
* R isreflexive.
® R issymmetric.

® R istransitive. EXERCISE

Show that, the hinary relation
“congreuence modulo 3”is a equivalence relation.

RewanionS

TRANSITIVE CLOSURE
DEFINITION

Let R be a hinary relation on A.

The transitive closure of ®_is the hinary relation X 'onA
That satisfies the following three properties:

® Rtistransitive.

* ROR:
¢ $ isany other transitive that contains R

then R'0.S.
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RewamionS
PARTITION

DEFINITION

Given a partition of A={A A, A,, ..A,}.
The binary relation induced by the partition, X,
is defined on A as follows:

foralixy OA x R ¥ If7 there is a subset A; of the partition
such thathothx andy areinA,
THEOREM
Let A be a set with a partition and
Let R be the relation induced by the partition.
Then R _is reflexive, symmetric and transitive.

RewanionS

DEFINITION EQUIVALENGE CLASS

Suppose Ais a set and R is a equivalence relation on A.

For each a (A, the equivalence class of a, denoted [a I,
is the set of all elements x in A such that

Xisrelatedtoaby R,
[al={xOA|x R a}.
EXAMPLE

Let R be the relation ‘congreuence modulo 3”.
[31=(03-3,6.-69-9..).
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RewamionS
LEMMA 1 THEOREM

Let R _be an equivalence relationonA,a b CA.

iia R bthenlal=[nl. LEMMA 2

Let R he an equivalence relationon A, a b CA, then

THEOREM either[al ~ [n]l=0orlal=Inl

IfAis anonempty set and R is an equivalence relationon A,

then the distinct equivalence classes of RIOI’III apartition of ;

that is, the union of the equivalence classes is all of A and the
intersection of any two distinct classes Is empty.

L 4 Let x and y be fractional numbers where
x =a/bandy = c/d
where a,b,c,d are integers.

L 2 Let R be the relation defined as
x R,y if andonlyif, a xd = b x c.
Show that

1. R is an equivalence relation and

2. Describe the distinct equivalence classes of R
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