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2110355 FORMAL LANGUAGES AND 
AUTOMATA THEORY

Athasit Surarerks, Dr. en Inf.

INTRODUCTION
LOGIC SET RELATION FUNCTION

DESCRIPTION
Studies concepts of grammars, automata, languages, 

computability and complexity ; the relationship between 
automata and various classes of languages; Turing machine 

and equivalent models of computation, the Chomsky 
hierarchy, context-free grammar, push-down automata, 

etc.; pumping lemmas and variants, closure properties and 
decision properties; parsing algorithms.
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EVALUATION

Homework 15 %
Quiz 20 %
Mid-Term examination 30 %
Final examination 35 %

REFERENCES

Introduction to Languages and Theory of 
Computation(2nd ed.) John C. Martin
Introduction to Computer Theory (2nd ed.) Daniel I. 
A. Cohen
Discrete Mathematics and its Applications (4th ed.) 
Kenneth H. Rosen
Languages and Machines: An Introduction to the 
Theory of Computer Science (2nd ed.) Thomas A. 
Sudkamp
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BACKGROUND

Charles Babbage
1791-1871

Created the first difference 
engine (producing the members of the 
sequence n2 + n + 41 at the rate of about 
60 every 5 minutes)

The 1st drawings of the 
analytical engine (describes five 
logical components, the store, the mill, the 
control, the input and the output)

The construction of modern computers, 
logically similar to Babbage's design
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Kurt Gödel
1906-1978

Proved that there was no 
algorithm to provide proofs 
for all the true statements 
in mathematics.

Universal model for all algorithms.

VARIOUS VERSIONS
OF A  UNIVERSAL ALGORITHM MACHINE

Andrei Andreevich Markov 1856-1922 
Emil Post 1897-1954
Alonzo Church 1903-1995
Stephen Kleene 1909-1994
John von Neumann 1903-1957
Alain Turing 1912-1954
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Alain Turing
1912-1954

Computing machinery and intelligence 

•studied problems which
today lie at the heart of
artificial intelligence.
•proposed the Turing Test 
which is still today the test 
people apply in attempting
to answer whether a 
computer can be intelligent. 

Warren McCulloch & Walter Pitts
neurophysiologists

Constructed for a “neural net”
was a theoretical machine of 
the same nature as the one 
Turing invented.

Modern linguists
Investigated a very similar subject

•What is language in general ?
•How could primitive humans have developed language ?

•How do people understand it ?
•How do they learn it as children ?

•What ideas can be expressed, and in what way ?
•How do people construct sentences from the idea s in their minds ?
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Noam Chomsky
Massachusetts Institute of Technology

Created the subject of 
mathematical models 
for the description of 
languages to answer 
these questions.

MAIN TOPIC

We shall study different types of 
theoretical machines that are 

mathematical models for actual 
physical processes.
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MACHINE MODEL

input output
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MACHINE MODEL

input output

machine

LANGUAGE

state

MACHINE MODEL

MAIN CONCLUSIONS
“ this can be done or it can never be done.”?
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AGENDA
Regular languages

DETERMINISTIC STATE MACHINES
TRANSITION GRAPHS

NONDETERMINISTIC STATE MACHINES

Context-Free languages
PUSH-DOWN AUTOMATA

TURING MACHINES

Context-sensitive languages
Recursive languages

Recursively enumerable languages

BACKGROUND
KHOWLEDGE

Logic
Set Relation & function
Theory & methods of proof
Asymptotic notation
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LOGIC

SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

Organon: the first treatise on logic.

The fundamental elements of this logic
are terms and arguments are evaluated
as good or bad depending on how the
terms are arranged in the argument.
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SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

All A are B (universal affirmative)
No A are B (universal negative)
Some A are B (particular affirmative)
Some A are not B (particular negative)

There are four different types of Syllogistic
arguments used to describe things with logic.

SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

All cats are animals.
No A are B (universal negative)
Some A are B (particular affirmative)
Some A are not B (particular negative)

There are four different types of Syllogistic
arguments used to describe things with logic.
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SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

All cats are animals.
No cats are plants.
Some A are B (particular affirmative)
Some A are not B (particular negative)

There are four different types of Syllogistic
arguments used to describe things with logic.

SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

All cats are animals.
No cats are plants.
Some animals are cats.
Some A are not B (particular negative)

There are four different types of Syllogistic
arguments used to describe things with logic.
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SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

All cats are animals.
No cats are plants.
Some animals are cats.
Some animals are not cats.

There are four different types of Syllogistic
arguments used to describe things with logic.

SYLLOGISTIC REASONING
Aristotle (384-322 B.C.)

This does not facilitate large compound formulas, however.

In fact in Prior Analytics Aristotle proposed the now
famous Aristotelian syllogistic, a form of argument
consisting of two premises and a conclusion.

His example is:-

•Every Greek is a person

•Every person is mortal

•Every Greek is mortal 
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DEDUCTIVE REASONING
Euclid of Alexandria  (325-265 B.C.)

Thirteen Books of Elements:
Axiom-Definition-Theorem-Proof

BOOK VII-Proposition2-3: Euclid’s 
algorithm for computing the greatest 
common divisor
BOOK IX-Proposition20: infinitely many 
primes
BOOK IX-Proposition21-29: Properties of 
parity of integers
BOOK IX-Proposition36: Perfect numbers

DEDUCTIVE REASONING
Euclid of Alexandria  (325-265 B.C.)

Thirteen Books of Elements:
Axiom-Definition-Theorem-Proof

The style of Euclid’s work 
has become the 
standard for formal 
mathematical writing up 
to the present day.
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MODAL LOGIC
Chrysippus of Soli (279-206 B.C.)

Developed a logic based on whole propositions

Every proposition is either true or 
false.
The truth of compound 
propositions depends on the truth 
or falsity of the component parts.
The foundations for the truth-
functional account of logic
Modal logic

COMPOUND LOGIC
Claudius Galenus: Galen of Pergamum (129-199 A.D.)

Developed a theory of compound 
categorical syllogis

Greek doctor
Introducing the idea of opposites 
to treat illnesses
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ITALIAN PHILOSOPHER
Ancius Manlius Severinus Boethius (480-524 A.D.)

Translated and wrote commentaries on the 
work of Aristotle and Chrysippus.

SYMBOLIC LOGIC
Gottfried Wilhelm von Leibniz (1646-1716 A.D.)

Invented the first artificial language 
for logic.

The fundamental theorem of his 
metaphysics of concepts
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PROPOSITIONAL LOGIC
George Boole (1815-1864 A.D.)

Invented Boolean algebra
The Mathematical Analysis of Logic
The Laws of Thought

PROPOSITIONAL LOGIC
George Boole (1815-1864 A.D.)

A proposition is a statement that is either true or false,
but not both.

Example: propositions

Every Greek is person. p

Every person is mortal. q

Every Greek is immortal. r

Propositions p and q are true, but r is false.
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PROPOSITIONAL LOGIC
Augustus De Morgan (1806-1871 A.D.)

Invented & traduced the term of 
“mathematical induction”

De Morgan's article
Induction (Mathematics) in the Penny 
Cyclopedia (1838)
introduced De Morgan's laws 
and his greatest contribution is as a 
reformer of mathematical logic. 

PROPOSITIONAL LOGIC
Augustus De Morgan (1806-1871 A.D.)

Invented & traduced the term of 
“mathematical induction”

EXAMPLE
It is raining today.
It is cold today.

It is not the case that it is raining or is 
cold today.

Today it is not cold and it is not raining.
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Identifying logical form
Statements

Compound statements
Negation, Conjunction & 

Disjunction
Exclusive or
Applications

Conditional statements
Exercises

PROPOSITIONAL LOGIC

Logical ForM
Example
If “Automata” is easy or I study hard, 
then I will get an A in this course.

Illustrate this sentence by a logical form 
which alphabet is usually used to represent 
their components.

p denotes “Automata” is easy.
q denotes I study hard.
r denotes I will get an A in this course.

If   p or   q,   then   r

IDENTIFYING LOGICAL FORM
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Logical ForM
Definition
A proposition is a statement that is either true or false but not both.

Examples
Budapest is the capital of Romania.
Five plus four equals nine.

Example He is a student.
Listen to me.
x + y = z

PROPOSITION

TRUE

FLASE

The truth or falsity of this statement
depends on “he”.

TRUTH 
VALUE

Logical ForM
Definition
Let p be a proposition. The statement

“It is not the case that p.”
is another proposition, called the negation of p.
The negation of p is denoted by ¬p, read “not p”.

Example
p denotes “Today is Sunday”.

Then,
“It is not the case that today is Sunday” is denoted by ¬p.

NEGATION

TRUE
FLASE

The truth or falsity of the 2nd statement
depends on the first one.

OPPOSITE 
TRUTH VALUE
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Logical ForM
NEGATION

DEFINITION
The negation of p has opposite truth value from p.

TF
FT

¬pp

TRUTH VALUE

TRUTH TABLE

Logical ForM
Definition
Let p and q be propositions. The compound proposition

“ p and q” (conjunction of p and q)
denoted by p∧ q, is the statement that is true
when both p and q are true and is false otherwise.

Example
p denotes “Today is Sunday”.
q denotes “John goes to school”.

Then,
“Today is Sunday and John goes to school” is denoted by p∧ q.

CONJUNCTION

TRUE

FALSE

FALSE
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Logical ForM
CONJUNCTION

DEFINITION
The conjunction of p and q, is true when, and only 
when, both p and q are true.

F

F

T

T

p

F

F

T

F

T

F

T

F

p∧ qq

TRUTH VALUE

2n

Logical ForM
Definition
Let p and q be propositions. The compound proposition

“ p or q” (disjunction of p and q)
denoted by p∨ q, is the statement that is false
when both p and q are false and is true otherwise.

Example
p denotes “Diana goes to school”.
q denotes “John goes to school”.

Then,
“Diana goes to school or John goes to school” is denoted by p∨ q.

DISJUNCTION

TRUE

FALSE

TRUE
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Logical ForM
DISJUNCTION

DEFINITION
The disjunction of p and q, is true when at least 
one of p or q is true.

F

F

T

T

p

T

F

T

F

T

T

T

F

p∨ qq

TRUTH VALUE

Logical ForM
Logical connectives (ordered)

•Negation
•Conjunction, Disjunction

MORE GENERAL COMPOUND 
STATEMENTS

EXAMPLE
(1) It is raining but it is not cold.
(2) It is neither raining nor cold.

Let p = “It is raining”,

q = “It is cold”.

(1) p ∧ ¬ q
(2) ¬p ∧ ¬ q
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Logical ForM
MORE GENERAL COMPOUND 

STATEMENTSDEFINITION
A propositional form is an expression made up of 
propositions (p,q,…) and logical connectives.

A propositional form is also a proposition.

F

F

T

T

p

F

F

T

F

T

F

T

F

p ∧ qq

TRUTH VALUE

EXAMPLE
(p∧ q)∨¬ p

T

T

F

F

¬ p (p ∧ q)∨ ¬ p

T

F

T

T

Logical ForM
MORE GENERAL COMPOUND 

STATEMENTS
EXAMPLE

A proposition is either true or false, 
but not both.

Let p = “A proposition is true”,

q = “A proposition is false”.

1. (p ∧ ¬ q) ∨ (¬p ∧ q)

2. (p ∨ q) ∧ ¬ (p ∧ q)
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Logical ForM
EXCLUSIVE OR

DEFINITION
Exclusive or, denoted by ⊕ , means “or but not both”.

F

F

T

T

p

T

F

T

F

F

T

T

F

p ⊕ qq

TRUTH VALUE

Logical ForM
EXCLUSIVE OR

DEFINITION
Exclusive or, denoted by ⊕ , means “or but not both”.

T

F

T

T

p ∨ q

T

T

F

T

¬ (p ∧ q)

T

F

F

T

(p ∨ q) ∧ ¬ (p ∧ q)

F

F

T

F

p ∧ q

F

F

T

T

p

T

F

T

F

q

TRUTH VALUE

TRANSLATE  p ⊕ q INTO SYMBOL (p ∨ q ) ∧ ¬ (p ∧ q ).

T

F

F

T

p ⊕ q
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Logical ForM
EXCLUSIVE OR

TRUTH VALUE

DEFINITION
Two propositions are called logically equivalent,

Usually denoted by ⇔,
If, and only if, they have identical truth values
for each possible substitution of propositions

for their statement variables.

EXAMPLE: p ⊕ q ⇔ (p ∨ q) ∧ ¬ (p ∧ q).

DEFINITION
Exclusive or, denoted by ⊕ , means “or but not both”.

TRANSLATE  p ⊕ q INTO SYMBOL (p ∨ q ) ∧ ¬ (p ∧ q ).

Logical ForM
LOGICALLY EQUIVALENT

TRUTH VALUE

DEFINITION
Two propositions are called logically equivalent,

Usually denoted by ⇔,
If, and only if, they have identical truth values
for each possible substitution of propositions

for their statement variables.

F

F

T

T

P

F

T

T

F

T

F

T

F

P ⇔ QQ

EXAMPLE: p ⊕ q ⇔ (p ∨ q) ∧ ¬ (p ∧ q).
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Logical ForM
TAUTOLOGY

TRUTH VALUE

DEFINITION
A tautology is a propositional form that is always true.

EXAMPLE: p ⊕ q ⇔ (p ∨ q) ∧ ¬ (p ∧ q).

DEFINITION
A contradiction is a propositional form that is always false.

DEFINITION
A propositional form that is neither tautology nor 

contradiction is called a contingency.

Application on circuitS
COMPUTER ADDITION

Consider the question of designing a circuit to produce
the sum of two binary digits p and q.

p q carry       sum
1 + 1 = 1 0
1 + 0 = 0 1
0 + 1 = 0 1
0 + 0 = 0 0

0000

1010

1001

0111

SumCarryqp

1 ⇔ TRUE

0 ⇔ FALSE
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Application on circuitS
COMPUTER ADDITION

Consider the question of designing a circuit to produce
the sum of two binary digits p and q.

p q carry       sum
1 + 1 = 1 0
1 + 0 = 0 1
0 + 1 = 0 1
0 + 0 = 0 0

0000

1010

1001

0111

Sum ⇔ p ⊕ qCarry ⇔ p ∧ qqp

1 ⇔ TRUE

0 ⇔ FALSE

Application on circuitS
COMPUTER ADDITION

Consider the question of designing a circuit to produce
the sum of two binary digits p and q.

Sum ⇔ p ⊕ qCarry ⇔ p ∧ qqp

CARRY ⇔ ( p and q) SUM ⇔ ( p or q ) and ( not ( p and q ) )
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Application on circuitS
COMPUTER ADDITION

and
p

q
CARRY

Consider the question of designing a circuit to produce
the sum of two binary digits p and q.

Sum ⇔ p ⊕ qCarry ⇔ p ∧ qqp

CARRY ⇔ ( p and q) SUM ⇔ ( p or q ) and ( not ( p and q ) )

Application on circuitS
COMPUTER ADDITION

and
p

q
CARRY

or

not
and SUM

Consider the question of designing a circuit to produce
the sum of two binary digits p and q.

Sum ⇔ p ⊕ qCarry ⇔ p ∧ qqp

CARRY ⇔ ( p and q) SUM ⇔ ( p or q ) and ( not ( p and q ) )
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SummarYTheorem : Logical Equivalences,

given any propositions  p,q and r, a tautology T
and a contradiction C, the following logical equivalences hold:

•Commutative laws: p∧ q ⇔ q∧ p p∨ q ⇔ q∨ p
•Associative laws: (p∧ q)∧ r ⇔ p∧ (q∧ r)

(p∨ q)∨ r ⇔ p∨ (q∨ r)
•Distributive laws: p∧ (q∨ r) ⇔ (p∧ q)∨ (p∧ r)

p∨ (q∧ r) ⇔ (p∨ q)∧ (p∨ r)
•Identity laws: p∧ T ⇔ p p∨ C ⇔ p
•Domination laws:(Universal bound laws) p∨ T ⇔ T p∧ C ⇔ C
•Idempotent laws: p∧ p ⇔ p p∨ p ⇔ p
•Negation laws: p∨¬ p ⇔ T p∧¬ p ⇔ C
•Double negative laws: ¬ (¬p) ⇔ p
•De Morgan’s laws: ¬ (p∨ q) ⇔ ¬ p∧¬ q

¬ (p∧ q) ⇔ ¬ p∨¬ q
•Absorption laws: p∨ (p∧ q) ⇔ p p∧ (p∨ q) ⇔ p

ExampleS
1.Show that (p∧ q)∨ (p∧¬ q)∨ (¬p∧ q) ⇔

(p∨ q) is a tautology.
2.Show that ¬(¬p∧ (p∨ q))∨ q is a 

tautology.
3.Verify the distributive law:

p∧ (q∨ r) ⇔ (p∧ q)∨ (p∧ r).
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Conditional StatementS

Let p, q be propositions. A statement of the form
If p then q, denoted by p → q

where p is called hypothesis
q is called conclusion.

The statement is false when p is true and q is false.

Example
If 3.201 is divisible by 6, then 3.201 is divisible by 3.

The truth value of this sentence is TRUE

IMPLICATION

Conditional StatementS
DEFINITION
Let p, q be propositions.
The conditional of q by p is “If p then q” or “p implies q”
and is denoted by p → q. 
It is false when p is true and q is false, and true otherwise.

TFF

TTF

FFT

TTT

p → qqp

IMPLICATION
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Conditional StatementS
EXAMPLE
Construct a truth table of  ( p ∨ ¬ q ) → ¬ p.

FF

TF

FT

TT

qp

T

T

F

F

¬ p

T

T

F

F

(p ∨ ¬ q]→ ¬ p

T

F

T

F

¬ q

T

F

T

T

p ∨ ¬ q

IMPLICATION

Conditional StatementS
DEFINITION
The contrapositive of a conditional statement of the form

“If p then q” is

“If ¬ q then ¬ p”.
Symbolically,  it is ¬ q →¬ p.

TFF

TTF

FFT

TTT

¬ q → ¬ pqp

CONTRAPOSITIVE

A conditional statement is logically
equivalent to its contrapositive.
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Conditional StatementS
CONTRAPOSITIVE

EXAMPLE
A conditional statement
IF today is Monday, tomorrow is Tuesday.
The contrapositive
IF tomorrow is not Tuesday, today is not Monday.

DEFINITION
The contrapositive of a conditional statement of the form

“If p then q” is

“If ¬ q then ¬ p”.
Symbolically,  it is ¬ q →¬ p.

Conditional StatementS
CONVERSE

The converse of p → q is q → p.

INVERSE

The inverse of p → q is ¬ p → ¬ q.

ONLY IF

p only if q means If ¬ q then ¬ p.

EXAMPLE
STATEMENT
If John can swim across the lake, he can swim to the island.
CONVERSE
If John can swim to the island, he can swim across the lake.
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Conditional StatementS
CONVERSE

The converse of p → q is q → p.

INVERSE

The inverse of p → q is ¬ p → ¬ q.

ONLY IF

p only if q means If ¬ q then ¬ p.
EXAMPLE

STATEMENT
If John can swim across the lake, he can swim to the island.
INVERSE
If John cannot swim across the lake, he cannot swim to the island.

Conditional StatementS
ONLY IF 

p only if q means If ¬ q then ¬ p.EXAMPLE
ONLY IF-STATEMENT
John will break the world’s record for the mile run only if
He runs the mule in under four minutes.
MEANING
• IF John does not run the mile in under four minutes, 

then he will not break the world’s record.
• If John breaks the world’s record,

then he will have run the mile in under four minutes.

John will break the world’s record,
if he runs the mile in under four minutes.
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Conditional StatementS
DEFINITION
Given p and q are statements.
p is a sufficient condition for q means

“If p then q”.
p is a necessary condition for q means

“If  ¬ p then ¬ q”

or “If q then p”.

NECESSARY & SUFFICIENT

CONSEQUENTLY,
p is a necessary and sufficient condition for q means

“p if, and only if, q”
p ↔ q.BICONDITIONAL OF p AND q

Valid & invalid argumentS

An argument is valid means that if all hypotheses are true, the 
conclusion is also true.

DEFINITION

Definition
An argument is a sequence of statements.  All statements excluded 
the final one are called “hypotheses”, the final statement is called 
“conclusion”. A argument is the form:

p; q; r; … ∴ f (read therefore)
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Valid & invalid argumentS
EXAMPLE OF VALID FORM

EXAMPLE
Given an argument p ∨ (q ∨ r) ; ¬ r ;    ∴ p ∨ q

FTFFFFF

FFTTTFF

TTTTFTF

TFTTTTF

TTTFFFT

TFTTTFT

TTTTFTT

TFTTTTT

p ∨ q¬ rp ∨ (q ∨ r)q∨ rrqp TRUE

VALID

SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p → q ; p ∴ q

MODUS PONENS

If it is raining, John does not go to school.
Now, it is raining.
CONCLUSION: John  does not go to school.
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SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p → q ; ¬q ∴ ¬ p

MODUS PONENS

MODUS TOLLENS

If it is raining, John does not go to school.
Now, John goes to school.
CONCLUSION: It is not raining.

SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p ∴ p ∨ q

MODUS PONENS

MODUS TOLLENS

DISJUNCTION ADDITION
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SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p ∧ q ∴ p

MODUS PONENS

MODUS TOLLENS

DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p ; q ∴ p ∧ q

MODUS PONENS

MODUS TOLLENS

DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

CONJUNCTIVE ADDITION
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SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p ∨ q ; ¬ q∴ p 

MODUS PONENS

MODUS TOLLENS

DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

CONJUNCTIVE ADDITION

DISJUNCTIVE SYLLOGISM

Either Diana or John goes to school.
Diana does not go to school.
CONCLUSION: John goes to school.

SummarYTheorem : Valid arguments,
given any propositions p,q and r, 
the following arguments are valid:

p → q ; q → r∴ p → r

MODUS PONENS

MODUS TOLLENS

DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

CONJUNCTIVE ADDITION

DISJUNCTIVE SYLLOGISM

HYPOTHETICAL SYLLOGISM
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SummarYTheorem : Valid arguments,
given any propositions  p,q and r, 
the following arguments are valid:

p ∨ q ; p → r ; q → r∴ r

MODUS PONENS

MODUS TOLLENS

DISJUNCTION ADDITION

CONJUNCTIVE SIMPLIFICATION

CONJUNCTIVE ADDITION

DISJUNCTIVE SYLLOGISM

HYPOTHETICAL SYLLOGISM
DILEMMA

ExampleS

1.Show that (p→q) ⇔ (¬p∨ q) is a tautology.
2.Show that (p∧ q) → (p∨ q) is a tautology.
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ConsistenT
DEFINITION
A set of propositional expressions is consistent

if there is an assignment of truth values to 
the variables in the expressions that makes 
each expression true.

EXAMPLE
1.p ∨ q
2.p → r
3.q → ¬r
4.( r ∧ s ) → q

ConsistenT
EXERCISE
Show the truth values of each variable that this 

system is consistent if possible.

1.r → q
2.p → q
3.¬q ∨ ¬ r
4.¬p ∨ r
5.p ∨ q
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ConsistenT
EXERCISE
Suppose that p,q,r is true and s is false.
IS this system consistent ?

1.r → q
2.p → q
3.¬q ∨ ¬ r
4.¬p ∨ s
5.p ∨ q

EXERCISES
Find the negations for these statements.
• This computer program has a logical error in the first 10 

lines or it is being run with an incomplete data set.
• This exercise is easy but I cannot solve it in 5 minutes.
• The dollar is at an all-time high and the stock market is 

at a record low.

Which statement forms are tautologies by using 
truth tables.
• (p ∧ q) ∨ (¬ p ∨ (p ∧ ¬ q))
• (p ∧ ¬ q) ∧ (¬ p ∨ q)
• ((¬ p ∧ q) ∧ (q ∧ r)) ∧ ¬ q
• (¬ p ∨ ¬ q) ∨ (p ∧ ¬ q))
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EXERCISES

Show that these statement forms are 
logically equivalences:
• (p → q)∧ p q
• (p∨ q)∧¬ q p
• (p∨ q)∧ ((¬p∨ (q∧ r))∧ (p∨ r) q∧ r
• (p∧ q)∨ r p∧ (q∨ r)

LOGIC
Consider the following statements:

All students go to school.
John is a student.
Diana is a student.

……

Of course we can conclude that
John goes to school.
Diana goes to school.

……
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LOGIC
The statement  “All students go to school” has two 
parts:
Variable students (denoted by variable x)
“go to school” (the predicate)

This statement can be denoted by P(x), where P 
denotes the predicate “go to school”.
P(x) is said to be the value of the propositional 
function P at x.
Once a value has been assigned to the variable x, 
the statement P(x) becomes a proposition and has 
a truth value.

LOGIC
Predicate : go to school. P

Variable : student x

Constant : John a
: Diana b

P(a) is true.
P(b) is true.
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Predicate
Quantifiers

Negation
Universal Conditional 

Statements
Universal Modus Ponens
Universal Modus Tollens

PREDICATE LOGIC

PREDICATE LOGIC

DEFINITION
The universal quantification of P(x) is 
the proposition
“P(x) is true for all values x in the universe of 

discourse”.
It is denoted by ∀ x P(x).

QUANTIFIERS

DEFINITION
The existential quantification of P(x) is the proposition
“There exists an element x in the universe of discourse 

such that P(x) is true”.
It is denoted by ∃ x P(x).
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PREDICATE LOGIC

EXAMPLE
All integers are Real numbers.
Some integers are not odd.

These statements can be expressed as:
∀ x(I(x)→R(x))
∃ x(I(x)∧¬ O(x)).

Where I(x) denotes “x is integer”
R(x) denotes “x is real”, and
O(x) denotes “x is odd”.

PREDICATE LOGIC

DEFINITION
The negation of a statement ∀ xP(x) is 
logically equivalent to a statement

∃ x ¬P(x).

NEGATION

DEFINITION
The negative of a statement ∃ x P(x) is logically 
equivalent to a statement

∀ x ¬P(x).
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PREDICATE LOGIC
UNIVERSAL CONDITIONAL STATEMENTS

Consider a statement ∀ x P(x) → Q(x).

CONVERSE
Its contrapositive is ∀ x ¬Q(x) → ¬P(x).

INVERSE
Its inverse is ∀ x ¬P(x) → ¬Q(x)..

CONVERSE
Its converse is ∀ x Q(x) → P(x).

PREDICATE LOGIC
UNIVERSAL MODUS PONENS

Consider a statement ∀ x P(x) → Q(x).

For a particular e,

P(e) is true,

therefore Q(e) is true.
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PREDICATE LOGIC
UNIVERSAL MODUS TOLLENS

Consider a statement ∀ x P(x) → Q(x).

For a particular e,

¬Q(e) is true,

therefore ¬P(e) is true.

PREDICATE LOGIC
RULES OF INFERENCES

Universal instantiation
∀ xP(x)  ∴ P(c) if c ∈ U.

Universal generalization
P(c) for an arbitrary c ∈ U ∴ ∀ xP(x)

Existential instantiation
∃ xP(x) ∴ P(c) for some element c ∈ U

Existential generalization
P(c) for some element c ∈ U ∴ ∃ xP(x)
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PREDICATE LOGIC
EXAMPLE

All students in this class are perfect.
Some students like “Automata”.
Some perfect people like “Automata”.
Let W be a set of people.

S(x) be “x is a student in this class”.
P(x) be “x is perfect”.
A(x) be “x like ‘Automata’ ”.

∀ x∈ W ( S(x) → P(x) )

∃ x∈ W ( S(x) ∧ A(x) )

∃ x∈ W ( P(x) ∧ A(x) )

SET RELATIO N & FUNCTION
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Contents

Set & Properties
Cartesian Product

Binary Relation
Function
• Injective

• surjective
• bijection

Equivalence Relation
Exercises

SOME DEFINITIONS
A is called a subset of B, denoted by A ⊆ B, if, and only if,

∀ x, if x ∈ A then x ∈ B.

A is a proper subset of B, if, and only if,

A ⊆ B and A ≠ B.

Operations on sets
• The union of A and B, A ∪ B, is the set { x | x ∈ A or x ∈ B }.

• The intersection of A and B, A ∩ B, is the set {x | x ∈ A and x ∈ B }.

• The difference of B minus A, B – A, is the set {x | x ∉ A and x ∈ B }.

• The complement of A, Ac, is the set {x ∈ U | x ∉ A }. (U = UNIVERSE].
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PropertieS
of sets

THEOREM
Given sets A,B and C.

•Commutative laws: A∩B = B∩A A∪ B = B∪ A

•Associative laws: (A∩B)∩C = A∩(B∩C)

•Distributive laws: A∪ (B∩C) = (A∪ B)∩(A∪ C)

•Idempotent laws: A∩U = A A∪ U = U

•De Morgan’s laws: (A∪ B)c = Ac ∩Bc (A∩B)c = Ac ∪ Bc

•Alternative representation for set difference A-B = A∩Bc

SOME DEFINITIONS
CARTESIAN PRODUCTDEFINITION

Given sets A1,A2, A3, …,An. The Cartesian products of A1,A2, A3, …,An,

denote by A1×A2 ×A3 × … × An, is the set

{(a1,a2, a3, …,an) | a1∈ A1. a2∈ A2. a3∈ A3. …, an∈ An }.

EXAMPLE
Let A={ 1,2,3 }, B={ a,b } and C = { x,y },
the Cartesian products of A B and c is

{ (1,a,x), (1,a,y), (1,b,x), (1,b,y),
(2,a,x), (2,a,y), (2,b,x), (2,b,y),
(3,a,x), (3,a,y), (3,b,x), (3,b,y)}.
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SOME DEFINITIONS
MUTUALLY/PAIRWISE DISJOINT

DEFINITION
Sets A1,A2, A3, …,An are Mutually disjoint

(pairwise or nonoverlapping)

Iff, any two sets Ai,Aj with distinct subscripts have any 

elements in common, precisely Ai∩Aj= empty set ∅ .

SOME DEFINITIONS
SET PARTITION

DEFINITION
A collection of nonempty sets {A1,A2, A3, …,An} is a Partition of a 

set A Iff, 

•A = A1∪ A2 ∪ A3 ∪ … ∪ An and

•A1,A2, A3, …,An are mutually disjoint.
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SOME DEFINITIONS
POWER SET

DEFINITION
Give a set A, the power set of A, denoted by P (A),

is the set of all subsets of A.

THEOREM
•For all sets A and B, if A ⊆ B, then P (A) ⊆ P (B).

•For all integers n ≥ 0, if a set A has n elements,

then P (A) has 2n elements.

RELATIONS
BINARYDEFINITION

Let A,B be sets. A binary relation R from A to B is a subset of 

the Cartesian product A×B. Given (x,y), ordered pair, in A ×B,

x is related to y by R, written xRy,  iff (x,y)∈ R.

EXAMPLE
The congruence modulo 2 relation

The relation R from Z to Z is defined as follows;

for all (x,y) ∈ Z×Z,  xRy iff x-y is even.

Example, 6R2, 120R36 etc.
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RELATIONS
FUNCTIONDEFINITION

A function F from A to B is a relation from A to B, F : A→B,
that satisfies the following properties:

1. For every x∈ A, there exists y∈ B such that (x,y)∈ F.
2. For all x∈ A, and y, z∈ B,

if (x,y)∈ F and (x,z)∈ F then y=z.

For (x,y) ∈ F , we usually write y =F (x) = image of x under F, 

and x is called pre-image of y under F. 

A is called domain of F.

B is called co-domain of F.

The set of all images of F is called range of F.

RELATIONS
COMPOSITIONS OF FUNCTIONS

DEFINITION
A function f, g  from A to B is a function from A to B. 

(f + g)(x) = f(x) + g(x).
(f g)(x) = f(x) g(x)

The composition of the functions f and g, denoted by f ο g, 
is defined as

(f ο g)(x) = f (g ( x ) )
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RELATIONS
FUNCTION

ARROW DIAGRAM
A function F from A to B.

1
2
3
4

a
b
c
d
e

F(1) = b

F(2) = a

F(3) = b

F(4) = e

A B

FUNCTIONS
INJECTIVE

DEFINITION
A function F from A to B is injective (or one-to-one)

iff for all elements x and y in A,

if F(x] =F(y] then x = y.

Or, equivalently,

if x ≠ y then F(x] ≠ F(y].

1
2
3
4

a
b
c
d
e

A B

This function is not One-to-one.
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INJECTIVE
DEFINITION
A function F from A to B is injective (or one-to-one)

iff for all elements x and y in A,

if F(x] =F(y] then x = y.

Or, equivalently,

if x ≠ y then F(x] ≠ F(y].

1
2
3
4

a
b
c
d
e

A B

This function is One-to-one.

FUNCTIONS

SURJECTIVE
DEFINITION
A function F from A to B is surjective (or onto)

iff for any element y in B,

it is possible to find 
an element x in A
such that

y = F(x] .

1
2
3
4

a
b
c
d
e

A B

This function is not Onto: c ∈ B but no element x in A that F(x]=c .

FUNCTIONS
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SURJECTIVE
DEFINITION
A function F from A to B is surjective (or onto)

iff for any element y in B,

it is possible to find 
an element x in A
such that

y = F(x] .

1
2
3
4

a
b

e

A B

This function is Onto.

FUNCTIONS

BIJECTION
DEFINITION
A one-to-one correspondence (or bijection) F 
from A to B is a function that is both one-to-one and onto.

1
2
3
4

a
b
c
d
e

A B

This function is not a bijection.

FUNCTIONS
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BIJECTION
DEFINITION
A one-to-one correspondence (or bijection) F 
from A to B is a function that is both one-to-one and onto.

1
2
3
4

a
b
c
d
e

A B

This function is not a bijection.

FUNCTIONS

BIJECTION
DEFINITION
A one-to-one correspondence (or bijection) F 
from A to B is a function that is both one-to-one and onto.

1
2
3
4

a
b
c
d

A B

This function is bijection.

FUNCTIONS
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RELATIONS
THE INVERSE OF A RELATION

DEFINITION
Let R be a relation from A to B. Define the inverse relation,

denoted by R–1 from B to A as follows:

R–1 = { (y,x) | (x,y)∈ R }.

RELATIONS
PROPERTIES

DEFINITION
Let R be a binary relation on A.

• R is reflexive iff for all x∈ A, x R x .

• R is symmetric iff for all x,y∈ A, if x R y then y R x.

• R is transitive iff for all x,y,z∈ A,

if x R y and y R z then x R z.

EXAMPLE
The binary relation “less than” is transitive.
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RELATIONS
EQUIVALENCE

DEFINITION
R is a equivalence relation on A iff
• R is a binary relation on A. 

• R is reflexive .

• R is symmetric.

• R is transitive. EXERCISE
Show that, the binary relation 

“congreuence modulo 3” is a equivalence relation.

RELATIONS
TRANSITIVE CLOSURE

DEFINITION
Let R be a binary relation on A.

The transitive closure of R is the binary relation R t on A

That satisfies the following three properties:

• R t is transitive.

• R ⊆ R t.

• S is any other transitive that contains R
then R t ⊆ S.
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PARTITION
DEFINITION
Given a partition of A={A1,A2, A3, …,An}.

The binary relation induced by the partition, R,

is defined on A as follows:

for all x,y ∈ A,  x R y Iff,  there is a subset Aj of the partition 

such that both x and y are in Aj.

RELATIONS

THEOREM
Let A be a set with a partition and

Let R be the relation induced by the partition.

Then R is reflexive, symmetric and transitive.

RELATIONS
EQUIVALENCE CLASS

DEFINITION
Suppose A is a set and R is a equivalence relation on A.

For each a ∈ A, the equivalence class of a, denoted [ a ],
is the set of all elements x in A such that

x is related to a by R.

[ a ] = { x ∈ A | x R a }. 

EXAMPLE
Let R be the relation  “congreuence modulo 3”.

[ 3 ] = { 0, 3, -3, 6, -6, 9, -9, … }.
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RELATIONS
THEOREMLEMMA 1

Let R be an equivalence relation on A, a b ∈ A.

If a R b then [ a ] = [ b ]. LEMMA 2
Let R be an equivalence relation on A, a b ∈ A, then

either [ a ] ∩ [ b ] = ∅ or [ a ] = [ b ].THEOREM
If A is a nonempty set and R is an equivalence relation on A,

then the distinct equivalence classes of R form a partition of A; 

that is, the union of the equivalence classes is all of A and the 
intersection of any two distinct classes is empty.

EXERCISES
Let x and y be fractional numbers where

x = a/b and y = c/d
where a,b,c,d are integers.

Let R be the relation defined as

x R y if, and only if, a × d = b × c.

Show that

1. R is an equivalence relation and

2. Describe the distinct equivalence classes of R.


