

$F_{aculty of} E_{ngineering}$

Chulalongkorn University

2110355 Formal Languages & Automata Theory

First Semester of 2002-03

1st exercise for Wednesday 12th June 2002 (12:45-14:00)

1. Let S_a, S_e, S_i, S_o, and S_u be the fives set of words in English Language where

 $S_x = \{y : y \text{ is a word containing } x\}$

given that x is either a, e, o, or u.

Write down the sets of following English words in the form of the 5 sets

- (i) Words which contain either 'a', 'e' or 'i'.
- (ii) Words which contain at least an 'a', an 'o', and a 'u'.
- (iii) Words which contain an 'e', an 'o' and a 'u'.
- (iv) Words which contain neither 'e' nor 'i'
- (v) Words which contain 'a' and 'e' but not 'i'.

Closure: Let A be a set. The closure of A, denoted by A* is the set of all sequences of elements of A including empty element A. For instance, $A = \{0, 1\}$, we have that $A^* = \{\Lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}$.

- 2. Let L_1 and L_2 be languages over $\{0, 1\}$ $(L_1 \subseteq \{0, 1\}^*$ and $L_2 \subseteq \{0, 1\}^*$). Prove or disprove that if $L_1 \subseteq L_2$, then $L_1^* \subseteq L_2^*$.
- 3. For a function $f : A \to B$ and $A_1 \subset A, A_2 \subset A$
 - (i) Prove that

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

- (ii) Prove that $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
- (iii) Give and example when equality holds in (ii)
- 4. Let *R* be the relation defined on set \Re (real number). *R* is defined as: for $x, y \in \Re$, x R y if x-y is an integer. Show that *R* is an equivalence relation.
- 5. Let R be the relation defined on the set of all languages in {0, 1}*. R is defined by: L₁ R L₂ if and only if there exists a string x such that x ∈ L₁ L₂.
 Proof or disproof that R has the following properties:
 (i) reflexive, (ii) symmetric, (iii) transitive.
- 6. Let a relation *R* defined on Σ^* where $\Sigma = \{a, b\}$. For $x, y \in \Sigma^*$: x R y if and only if |x| = |y|. Prove that *R* is an equivalence relation

- 7. Let L₁ = { x ∈ {0, 1}* | n_a(x) = n_b(x) }. x and y be strings in L₁. And R is defined by: x R y if and only if n_a(x) ≤ n_b(y).
 Proof or disproof that R has the following properties: (i) reflexive, (ii) symmetric, (iii) transitive.
- Let C be the set of provinces in Thailand
 <u>Define</u>: a R b to hold for two provinces in C where there is a non-stop bus trip from a to b
 - (i) Is *R* reflexive?
 - (ii) Is *R* transitive? Justify your answer
- 9. Prove that if n+1 distinct integers are selected from the set $\{i : 1 \le i \le 2n\}$ the one of the selected integers will divide some other selected integer exactly.
- 10. To check whether an integer *n*, where n > 1, is prime, it suffices to check that *n* is not divisible by any prime number less than or equal to \sqrt{n} . Justify the statement.
- 11. For all positive integer n, $n^2 85n + 249$ is prime. Prove this statement or give a counterexample to disprove it.
- 12. For each each $n \ge 0$, we define the strings a_n and b_n as follows: $a_0 = 0$ $b_0 = 1$ for n > 0, $a_n = a_{n-1}b_{n-1}$; $b_n = b_{n-1}a_{n-1}$
 - (i) For every $n \ge 0$, the string a_n and b_n are of the same length.
 - (ii) For every $n \ge 0$, a_n and b_n differ in every position.
 - (iii) For every $n \ge 0$, a_{2n} and b_{2n} are palindromes.
 - (iv) For every $n \ge 0$, a_n contains neither the substring 000 nor the substring 111.
- 13. Show that the sum of any three consecutive integers is divisible by 3. (Two integers are consecutive *iff* one integer differs from the other by the value of one)
- 14. Any two consecutive integers have opposite parity.
- 15. Use mathematical induction to prove that for all positive integer n2+4+6+...+2 $n = n^2 + n$ is true
- 16. Show that for all integers $n \ge 1$, $2^{2n} 1$ is divisible by 3.

17. Observe that,

 $\frac{1}{1 \times 3} = \frac{1}{3}$ $\frac{1}{1 \times 3} + \frac{1}{3 \times 5} = \frac{2}{5}$ $\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} = \frac{3}{7}$ $\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \frac{1}{7 \times 9} = \frac{4}{9}$

Guess a general formula and prove it by mathematical induction.

- 18. For each $n \ge 0$, we define the strings a_n and b_n as follows $a_0 = 0$ $b_0 = 1$ for n > 0, $a_n = a_{n-1}b_{n-1}$; $b_n = b_{n-1}a_{n-1}$
 - (i) For every $n \ge 0$, the string a_n and b_n are of the same length.
 - (ii) For every $n \ge 0$, a_n and b_n differ in every position.
 - (iii) For every $n \ge 0$, a_{2n} and b_{2n} are palindromes.
 - (iv) For every $n \ge 0$, a_n contains neither the substring 000 nor the substring 111.