2110355 FORMAL LANGUAGES AND AUTOMATA THEORY THEORY AND METHODS OF PROOF

Athasit Surarerks, Dr. en Inf.

TECHNICAL WORDS

A theorem is a statement that can be shown to be true. A sequence of statements used to demonstrate a theorem is called a proof.

The rules of inferences, which are the means used to draw conclusions from other assertions, tie together the steps of a proof.

A lemma is a simple theorem used in the proof of other theorems.

A corollary is a proposition that can be established directly from a theorem that has been proved.

A conjecture is a statement whose truth value is unknown.

 Methods of Proce Direct proce Disproof by counterexamp Indirect Argument Contradiction Contradiction Contraposition Mathematical Induction Well-ordering Princip Mathematical Induction Recursive definition Recursive Algorithm Program Correctness Asymptotic notation 	• Disproc • Disproc • Mathe • W • Ma • Ma • Rec • Proc • Asy
---	--

Proving existential statements

 $\exists x \text{ in } \mathcal{D} \text{ such that } Q(x) \text{ is true}$ If and only if Q(x) is true at least one x in \mathcal{D} .

One way to prove this is to find an x in \mathcal{D} that makes Q(x) true.

Proving existential statements

Example

Prove the following: there exists an integer x such that it can be written into two ways as a sum of two prime numbers.

Proof: Let x = 10.

Since 10 = 5+5 and 10 = 3+7 and 3, 5 and 7 are prime numbers, 10 can be written into 2 ways as a sum of two prime numbers. QED

CONSTRUCTIVE PROOFS OF EXISTENCE

Example Proving existential statements

Show that there is a prime greater than n for every positive integer n.

Prove that : $\forall n \exists x (x \text{ is prime and } x > n).$

Proof: Consider the integer n!+1.

There is at least one prime divides n!+1.

Note that $n!+1 \equiv 1 \pmod{k}$ for $k = 1 \ 2 \ 3 \dots n$.

Hence, any prime factor of n!+1 must be greater than n.

QED

NONCONSTRUCTIVE PROOFS OF EXISTENCE

Proving universal statements

 $\forall x \text{ in } \mathcal{D}$, if P(x) then Q(x).

Proving universal statements

Proof by cases

To prove that $(p_1 \lor p_2 \lor p_3 \dots \lor p_n) \rightarrow q$. This can be shown by prove that $(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land (p_3 \rightarrow q) \land \dots \land (p_n \rightarrow q)$

Proving universal statements

method of generalizing from the generic particular

TO SHOW THAT

"Every element of a domain satisfies a certain property: Suppose χ is a particular but arbitrarily chosen element of the domain and show that χ satisfies the property".

INDIRECT ARGUMENT

Method of contradiction

- 1.Suppose the statement to be proved is false.
- 2.Show that this supposition leads logically to a contradiction.
- 3.Conclude that the statement to be proved is true.

Francesco Maurolico 1494-1575

First use of mathematical induction to prove that The sum of the first n odd positive integers equals n^2 .

Gave a table of secants.

Why mathematical induction is valid ?

Mathematical induction:

$$(P(1) \land \forall n \ P(n) \rightarrow P(n+1)) \rightarrow \forall n \ P(n).$$

We have to show that this statement is a tautology statement.

MATHEMATICAL INDUCTIONWhy mathematical induction is valid ?Proof: Suppose we know that P(1) is true and that
 $P(n) \rightarrow P(n+1)$ is true for all positive integers n.To show that P(n) must be true for all positive integer n,
assume that there is at least one positive integer n,
assume that there is at least one positive integer for which
P(n) is false.Let S be the set of positive integers for which P(n) is false.DescriptionDescriptionTo show that P(n) must be true for all positive integer n,
assume that there is at least one positive integer for which
P(n) is false.Let S be the set of positive integers for which P(n) is false.S is nonempty set.By well-ordering principle, let k be the least element of S.S o P(k-1) must be true, and P(k) is false.Since P(n) \rightarrow P(n+1) and P(k-1) are true, P(k) is true.This contradicts the proof that P(k) is false.

Example: Show that the sum of the first n odd positive integers is n^2 . Proof: We have to prove that $P(n) : 1+3+5+...+(2n-1)=n^2$. It is clear that P(1) is true. Suppose that P(n) is true. But P(n+1) = 1+3+5+...+(2n+1) = n^2+2n+1 = $(n+1)^2$. This completes the proof. QED

DATHEMATICAL INDUCTIONThe second principle of mathematical induction Example: Show that if n is an integer greater than 1, then n can be written as the product of primes. Proof: n=2 is true. Assume that for n=2,3,...,k, we have that n can be written as the product of primes. Case: n+1 is prime. Case: n+1 is composite. Then n=ab, 2≤a≤b<n+1. By the induction hypothesis, both a and b can be written as the product of primes. This completes the proof. QED

RECURSIVE DEFINITION EXAMPLE f(0) = 3f(n+1) = 2f(n) + 3.f(1) = 2f(0)+3 = 6+3 = 9f(2) = 2f(1)+3 = 18+3 = 21f(3) = 2f(2)+3 = 42+3 = 45f(4) = 2f(3)+3 = 90+3 = 93...

RECURSIVE DEFINITION

EXAMPLE

Let f(0)=0, f(1)=1 and f(n)=f(n-1)+f(n-2), for n = 2, 3, 4, ...

RECURSIVE DEFINITION

 $\begin{array}{ll} \text{Lamé Theorem} \\ & \text{gcd}(a,b) \text{ by Euclidean algorithm, the number of divisions} \leq 5k \\ & \text{where } b < 10^k \text{ and } a \geq b. \\ & \text{Find gcd}(a,b) \text{ where } a \geq b. \\ & \text{Let } a = r_0 \text{ and } b = r_1. \\ & \text{Rewrite} \qquad r_0 \qquad = r_1 q_1 + r_2 \text{ where } 0 \leq r_2 < r_1 \\ & r_1 \qquad = r_2 q_2 + r_3 \text{ where } 0 \leq r_3 < r_2 \\ & r_2 \qquad = r_3 q_3 + r_4 \text{ where } 0 \leq r_4 < r_3 \\ & \dots \\ & r_{n-2} \qquad = r_{n-1} q_{n-1} + r_n \text{where } 0 \leq r_n < r_{n-1} \\ & r_{n-1} \qquad = r_n q_1 \\ & \text{gcd}(a,b) = r_n \text{ and} \\ & \text{The number of divisions} = n. \end{array}$

RECURSIVE DEFINITION

Lamé Theorem

gcd(a,b) by Euclidean algorithm, the number of divisions $\leq 5k$ where $b\,<\,10^k$ and a ${\geq}b.$

$$\begin{split} b &> \alpha^{n-1}.\\ \text{Since } \log_{10}\alpha &\sim 0.203 > 1/5.\\ & \log_{10}b > \log_{10}\alpha^{n-1} > (n-1)/5.\\ \text{Let } b &< 10^k.\\ & (n-1)/5 < k.\\ \text{Since } n \text{ is an integer, then } n-1 \leq 5k.\\ \text{This completes the proof.} \end{split}$$

QED.

Program VerificatioN

DEFINITION

A program or program segment S is said to be partially correct with respect to the initial assertion p and the final assertion q if wherever p is true for the input values of S and S terminates, the q is true for the output values of S, denoted by p{S}q, called *Hoare triple*.

RULE OF INFERENCE (composition rule) $p{S}q ; q{R}r \therefore p{S;R}r$

Asymptotic notationS		
Little-o notation	0	
Little-omega notation	ω	
Theta notation	Θ	
Big-O notation	0	
Big-omega notation	Ω	

Little-o notation

Informally,

saying some equation f(n) = o(g(n)) means f(n) becomes insignificant relative to g(n) as n approaches infinity. More formally

it means for all c>0, there exists some k>0 such that $0\leq f(n)< cg(n) \text{ for all }n\geq k.$

The value of k must not depend on n, but may depend on c.

Note:

As an example, f(n) = 3n + 4 is $o(n^2)$ since for any c we can choose k > (3+ (9+16c))/2c. 3n + 4 is not o(n). o(f(n)) is an upper bound.

That is

$$o(g(n)) = \{f(n) \mid \lim_{n\to\infty} (f(n)/g(n))=0\}.$$

