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2110355 FORMAL LANGUAGES AND 
AUTOMATA THEORY

Athasit Surarerks, Dr. en Inf.

THEORY AND METHODS OF PROOF

Take a few minutes to try to answer 
these questions for yourself.

 x -1  =  x  - 1 ?
 x – y  =  x  -  y  ?

How sure am I of my answers ?

THEORY AND METHODS OF PROOF
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THEORY AND METHODS OF PROOF
The underlying theme of this topic is 
the question of how to determine the 

truth or falsity of a mathematical 
statement.

Understanding mathematical induction.

TECHNICAL WORDS
THEOREM

PROOF
RULES OF INFERENCES

LEMMA
COROLLARY
CONJECTURE
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TECHNICAL WORDS
A theorem is a statement that can be shown to be true.
A sequence of statements used to demonstrate a theorem 
is called a proof.
The rules of inferences, which are the means used to draw 
conclusions from other assertions, tie together the steps of 
a proof.
A lemma is a simple theorem used in the proof of other 
theorems.
A corollary is a proposition that can be established directly 
from a theorem that has been proved.
A conjecture is a statement whose truth value is unknown.

ContenTs

Methods of Proof
• Direct proof

• Disproof by counterexample
• Indirect Argument

Contradiction
Contraposition

Mathematical Induction
• Well-ordering Principle

• Mathematical Induction
• Recursive definition

Recursive Algorithms
Program Correctness
Asymptotic notations
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INTRODUCTION
It is not sunny this afternoon and it is colder than 
yesterday. We will go swimming only if it is sunny.
If we do not go swimming, then we will take a 
canoe trip. If we take a canoe trip, then we will 
be home by sunset”.

Let p be “It is sunny this afternoon”,
q be “It is colder than yesterday”,
r be “We will go swimming”,
s be “We will take a canoe trip”,
t be “We will be home by sunset”.

1 ¬p∧ q Hypothesis
2 ¬p Simplification using step1
3 r→p Hypothesis
4 ¬ r Modus tollens using step 2 and 3.
5 ¬ r→s Hypothesis
6 s Modus ponens using step 4 and 5.
7 s→t Hypothesis
8 t Modus ponens using step 6 and 7.

Show that we will be home by sunset.

DIRECT PROOF
RULES OF INFERENCE

Universal instantiation
∀ xP(x)  ∴ P(c) if c ∈ U.

Universal generalization
P(c) for an arbitrary c ∈ U ∴ ∀ xP(x)

Existential instantiation
∃ xP(x) ∴ P(c) for some element c ∈ U

Existential generalization
P(c) for some element c ∈ U ∴ ∃ xP(x)
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DIRECT PROOF
Proving existential statements

∃ x in D such that Q(x) is true
If and only if

Q(x) is true at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true.

DIRECT PROOF
Proving existential statements

∃ x in D such that P(x)→Q(x) is true
If and only if

P(x)→Q(x) is true at least one x in D.

One way to prove this is to find an x in D
that makes P(x)→Q(x) true.
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DIRECT PROOF

Proving existential statements

Example
Prove the following: there exists an integer x such that it
can be written into two ways as a sum of two prime numbers.
Proof: Let x = 10.
Since 10 = 5+5 and 10 = 3+7 and 3, 5 and 7 are prime 
numbers, 10 can be written into 2 ways as a sum of two prime 
numbers. QED

CONSTRUCTIVE PROOFS OF EXISTENCE

DIRECT PROOF

Proving existential statementsExample
Show that there are n consecutive composite positive integers 
for every positive integers n.

Prove that : ∀ n ∃ x (x+i is composite for i = 1 2 3 … n)
Proof: Let x = (n+1)! +1. Consider the integers

x+1, x+2, x+3, …, x+n.
Note that i+1 divides x+i = (n+1)! + (i+1) for i = 1 2 3 … n.
Hence, n consecutive composite integers have been given.

QED
CONSTRUCTIVE PROOFS OF EXISTENCE
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DIRECT PROOF

Proving existential statementsExample
Show that there is a prime greater than n for every positive 
integer n.

Prove that : ∀ n ∃ x (x is prime and x > n).
Proof: Consider the integer n!+1.

There is at least one prime divides n!+1.
Note that n!+1 ≡ 1 (mod k) for k = 1 2 3 … n.
Hence, any prime factor of n!+1 must be greater than n.

QED
NONCONSTRUCTIVE PROOFS OF EXISTENCE

DIRECT PROOF

Proving existential statements

Example
Prove the following: there exists an integer x such that
If x is divisible by 3 then  5x2 is divisible by 6.
Proof: Let x = 6.
6 is divisible by 3  and
5×62 = 180.
180 is divisible by 6. QED
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DIRECT PROOF
Proving universal statements

∀ x in D, if P(x) then Q(x).

DIRECT PROOF

Proving universal statements
Example

If n is an even integer between 6 and 20, 
then n can be written as a sum of two prime numbers.

Proof:

6 = 3+3 8 = 3+5 10 = 3+7 12 = 5+7

14 = 7+7 16 = 11+5 18 = 11+7 20 = 13+7

QED
Since D is finite (or finite number of elements in D satisfied P),

this statement can be proved by the
method of exhaustion.
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DIRECT PROOF

Proving universal statements

Proof by cases
To prove that (p1∨ p2 ∨ p3… ∨ pn)→q.
This can be shown by prove that
(p1→q)∧ (p2→q)∧ (p3→q)∧ … ∧ (pn→q)

DIRECT PROOF

Proving universal statements

EXAMPLE
Prove that

“If n is not divisible by 3, then n2 ≡ 1 (mod 3)”.
Proof:
Suppose that n is not divisible by 3.
Case 1 :  n ≡ 1 (mod 3).

So n = 3k+1. Since n2 = 3(3k2+2k)+1.
Hence n2 ≡ 1 (mod 3).

Case 2 :  n ≡ 2 (mod3).
So n = 3k+2. Since n2 = 3(3k2+4k+1)+1
Hence n2 ≡ 1 (mod 3). QED.
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DIRECT PROOF

Proving universal statements

TO SHOW THAT
“Every element of a domain satisfies a certain property:

Suppose x is a particular but arbitrarily chosen
element of the domain

and show that x satisfies the property”.

method of generalizing from the generic particular

DIRECT PROOF
Proving universal statements

•Express the statement to be proved in the form
∀ x in D, if P(x) then Q(x).

•Start the proof by supposing x is a particular
but arbitrarily chosen element of D
for which the hypothesis P(x) is true

•Show that Q(x) is true
by using definitions, previously established results,
and the rules for logical inference.

METHOD OF DIRECT PROOF
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DIRECT PROOF

Proving universal statements
Example
Prove that if the sum of any two integers is even,
then so is their difference.

Proof:

•∀ x,y in Z, if x+y is even then x-y is even.

•Suppose that x+y = 2k for some integer k.

•Show that x-y is even. QED

DIRECT PROOF

Proving universal statements
Example
Prove that if the sum of any two integers is even,
then so is their difference.

Proof:

•∀ x,y in Z, if x+y is even then x-y is even.

•Suppose that x+y = 2k for some integer k.

•Then  x-y is even. QED

x+y = 2k  ;  x = 2k-y  ;  x-y = 2k-2y = 2(k-y)
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DIRECT PROOF

Proving universal statements
Trivial proof
Suppose that the conclusion of p→q is true. Then this 
statement is true since it has the form T → T or F→T. 
Hence, it we can show that q is true, then a proof can 
be given.

EXAMPLE
P(n) is the proposition “For two positive integers 
a,b, if a<b then an≤bn”.

Show that P(0) is true.

Proof: a0 = b0 = 1.Then P(0) is true. QED

DIRECT PROOF

Proving universal statements
Vacuous proof
Suppose that the hypothesis of p→q is false. Then 
this statement is true since it has the form F → T or 
F→F. Hence, if we can show that p is false, then a 
proof can be given.

EXAMPLE
P(n) is the proposition “if n>1 then n2>n”.

Show that P(0) is true.

Proof: Since 0<1, P(0) is true. QED
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DIRECT PROOF

Proving universal statements

Fallacies
•Fallacy of affirming the conclusion
•Fallacy of denying the hypoythesis.

EXAMPLEs. P(n) → Q(n)

We have that Q(n) is true. Conclusion : P(n)

We have that ¬P(n) is true. Conclusion : ¬Q(n).

DISPROOF BY COUNTEREXAMPLE

Consider the question of

disproving a statement of the form

∀ x in D, if P(x) then Q(x).
Showing that this statement is false 

is equivalent to showing that its negation is true. 

Show that
∃ x in D, P(x) and ¬Q(x) are true.
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DISPROOF BY COUNTEREXAMPLE

EXAMPLE
For any real numbers a and b,
If a2 = b2 then a = b.

Since 5,-5 are real numbers
52 = 25 and (-5)2 = 25, but 5 ≠ -5.

INDIRECT ARGUMENT

Method of contradiction
Method of contraposition
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INDIRECT ARGUMENT
Method of contradiction

1.Suppose the statement to be 
proved is false.

2.Show that this supposition leads 
logically to a contradiction.

3.Conclude that the statement to 
be proved is true.

INDIRECT ARGUMENT
Method of contradiction

EXAMPLE
The sum of any rational number and 

irrational number is irrational.
Proof: Let r= a/b be a rational number (a,b are integers),
and let s be an irrational number.
Suppose that r+s is a rational number.
Then, r+s = c/d which c and d are integers.
We have that
r+s = a/b+s = c/d implies s = a/b-c/d = (bc-ad)/bd.
This implies that s is a rational number.
This contradicts the supposition that s is irrational. QED
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INDIRECT ARGUMENT
Method of contradiction

EXAMPLE
The Halting problem is unsolvable problem.

H(P,I)

Halt

Loops forever

P: Program

I: Input data

H should be able to determine if 
P will halt when it is given a 

copy of itself as input.

INDIRECT ARGUMENT
Method of contradiction

EXAMPLE
The Halting problem is unsolvable problem.

H(P,P)

Halt

Loops forever

P: Program

P: Program

H should be able to determine if 
P will halt when it is given a 

copy of itself as input.

K(P)

Loop forever

Halt

Consider if it is given K as input.
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INDIRECT ARGUMENT
Method of contradiction

EXAMPLE
The Halting problem is unsolvable problem.

Halt

Loops forever

K: Program

K(K)

Loop forever

Halt

Consider if it is given K as input.

H(K,K)

Contradiction:
If the output of H(K,K) is “halt”, then K(K) loops forever.
If the output of H(K,K) is “loop forever”, then K(K) halts.

INDIRECT ARGUMENT
Method of contradiction

EXAMPLE
The Halting problem is unsolvable problem.

Proof:Assume that H(P,I) be a machine that can determine if 
program P willl halt or loop forever with the inout I.
K(P,I) writes « halt » if P halts with the input I and writes
« loop forever » if P loops forever with the input I.
We construct a machine K(P) that the output is « halt » if the
output of H(P,P) is « loop forever », otherwise K(P) writes
« loop forever ».
When K(P) writes « halt », it contradicts with H(K,K) loops.
When K(P) writes « loop forever », it contradicts with H(K,K).
This completes the proof.

QED
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INDIRECT ARGUMENT
Method of contraposition

• Express the statement to be proved in the form
∀ x in D, if P(x) then Q(x)

• Rewrite this statement in the contrapositive
form

∀ x in D, if Q(x) is false then P(x) is false.
• Prove the contrapositive by a direct proof

1.Suppose x is an element of D such that 
Q(x) is false.

2.Show that P(x) is false.

INDIRECT ARGUMENT
Method of contraposition

EXAMPLE
If the square of an integer is even, the 

integer is even.
Proof: For all integers n, if n2 is even, then n is even.
CONTAPOSITIVE: For all integers n, if n is odd then n2 is odd.
Since n is odd, then n = 2a + 1 where a is an integer,

n2 = 4a2 + 4a + 1 is odd.
This completes the proof of the contrapositive. QED
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MATHEMATICAL INDUCTION

Francesco Maurolico
1494-1575

First use of mathematical 
induction to prove that
The sum of the first n odd 
positive integers equals 
n2.
Gave a table of secants.

MATHEMATICAL INDUCTION

Well-ordering principle
Mathematical induction
Recursive definition
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MATHEMATICAL INDUCTION

A proof by mathematical induction 
that P(n) is true for every positive 
integer n consists of two steps:
• BASIC step: P(1) is shown to be 

true.
• INDUCTIVE step: P(n)→P(n+1) is 

shown to be true for every 
positive integer n.

WHY ?

MATHEMATICAL INDUCTION

Every nonempty set of nonnegative 
integers has a least element.

WELL-ORDERING PRINCIPLE
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MATHEMATICAL INDUCTION

Mathematical induction:

(P(1) ∧ ∀ n P(n) → P(n+1) ) → ∀ n P(n).

We have to show that this statement is a tautology statement.

Why mathematical induction is valid ?

MATHEMATICAL INDUCTION

Proof: Suppose we know that P(1) is true and that 
P(n)→P(n+1) is true for all positive integers n.

To show that P(n) must be true for all positive integer n, 
assume that there is at least one positive integer for which 
P(n) is false.

Let S be the set of positive integers for which P(n) is false.
S is nonempty set.
By well-ordering principle, let k be the least element of S.
So P(k-1) must be true, and P(k) is false.
Since P(n)→P(n+1) and P(k-1) are true, P(k) is true.
This contradicts the proof that P(k) is false. QED

Why mathematical induction is valid ?
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MATHEMATICAL INDUCTION

Proof: We have to prove that 
P(n) : 1+3+5+...+(2n-1)=n2.

It is clear that P(1) is true. Suppose that P(n) is true.
But P(n+1) = 1+3+5+...+(2n+1)

= n2+2n+1
= (n+1)2.

This completes the proof. QED

Example: Show that the sum of the first n 
odd positive integers is n2.

MATHEMATICAL INDUCTION

Proof: Let P(n) be the proposition that a set with n 
elements has 2n subsets.

It is clear that P(1) is true. Suppose that P(n) is true.
Let T be the set with n+1 elements.
Write T=S∪ {a} where a is an element of T and
T-S={a}. S has 2n subsets. For each subset X of S,
The subset of T can be obtained by X and X∪ {a}.
Then T has 2×2n=2n+1.
This implies that P(n+1) is true.
This completes the proof. QED

Example: Show that a set with n element 
has 2n subsets.
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MATHEMATICAL INDUCTION

Hx = 1 + (1/2) + (1/3) + … + (1/x).
Proof: Let P(n) be Hk ≥ 1 + (n/2) for every integers n.
P(0) is true, since H1 = 1 ≥ 1 + (0/2) = 1.
Assume that for all n, P(n)→P(n+1) is true.
Suppose P(n) is true. But

Hk+1 = Hk + (1/2n+1) + (1/2n+2)+…+(1/2n+1)
≥ (1+(n/2)) + (1/2n+1)+…+(1/2n+1)
≥ (1+(n/2)) + 2n(1/2n+1)
= (1+(n/2))+(1/2)
= 1+((n+1)/2)

This completes the proof. QED

Example: Show that Harmonic numbers
Hk ≥ 1 + (n/2) where k = 2n.

MATHEMATICAL INDUCTION

Basic step:
P(1) is shown to be true.

Induction step:
(P(1)∧ P(2)∧ P(3)∧ …∧ P(n))→P(n+1) 
is shown to be true for every 
positive integer n.

The second principle of mathematical 
induction
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MATHEMATICAL INDUCTION

Example: Show that if n is an integer greater than 1, 
then n can be written as the product of primes.

Proof: n=2 is true. Assume that for n=2,3,…,k, we 
have that n can be written as the product of 
primes.

Case:n+1 is prime. 
Case:n+1 is composite. Then n=ab, 2≤a≤b<n+1.

By the induction hypothesis, both a and b
can be written as the product of primes.
This completes the proof. QED

The second principle of mathematical 
induction

MATHEMATICAL INDUCTION

Model that Outcome processes
• occur repeatedly
• according to definite patterns

RECURSIVE DEFINITION

EXAMPLE
At the end of each month, John can earn n2 US$ 
plus if he has n US$ at the beginning of the month.
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MATHEMATICAL INDUCTION

RECURSIVE DEFINITION

EXAMPLE
At the end of each month, John can earn n2 US$ 
plus if he has n US$ at the beginning of the month.

The first month 1 US$
The 2nd month 2 US$
The 3rd month 6 US$
The 4th month 42 US$
... 

P(n) = P(n-1)2 + P(n-1)
P(n) = US$ he has at the end of the nth month,

with P(1) = 1.

MATHEMATICAL INDUCTION

RECURSIVELY DEFINED FUNCTIONS
RECURSIVE DEFINITION

To define a function with the set of 
nonnegative integers as its domain,

•Specify the value of the function at 
zero.
•Give a rule for finding its value as an 
integer from its values at smaller 
integers.



26

MATHEMATICAL INDUCTION

EXAMPLE
RECURSIVE DEFINITION

f(0) = 3
f(n+1) = 2f(n) + 3.

f(1) = 2f(0)+3 = 6+3 = 9
f(2) = 2f(1)+3 = 18+3 = 21
f(3) = 2f(2)+3 = 42+3 = 45
f(4) = 2f(3)+3 = 90+3 = 93
…

MATHEMATICAL INDUCTION

EXAMPLE
RECURSIVE DEFINITION

Given an inductive definition of the factorial 
function.
F(n) = n!
Define the initial value F(0) = 1, since 0!=1.
Find F(n+1) from F(n).

F(n+1) = (n+1)!
= (n+1) n!
= (n+1) F(n).
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MATHEMATICAL INDUCTION

EXAMPLE
RECURSIVE DEFINITION

Let f(0)=0, f(1)=1 and f(n)=f(n-1)+f(n-2),
for n = 2, 3, 4, …

f(2) = f(1)+f(0) = 1+0 = 1
f(3) = f(2)+f(1) = 1+1 = 2
f(4) = f(3)+f(2) = 2+1 = 3
f(5) = f(4)+f(3) = 3+2 = 5
f(6) = f(5)+f(4) = 5+3 = 8
f(7) = f(6)+f(5) = 8+5 = 13
…

MATHEMATICAL INDUCTION

EXAMPLE
RECURSIVE DEFINITION

Show that f(n) > αn-2 where α=(1+51/2)/2,
for every n ≥ 3.
Proof: f(3) = 2 > α and f(4) = 3 > (3+51/2)/2 = α2.
Since α is a solution of x2-x-1=0, α2 = α+1.
Therefore, αn-1= (α+1) αn-3 = αn-2+ αn-3.
For n ≥ 5, f(n-1)> αn-3 and f(n)> αn-2.
We have that f(n+1)=f(n)+f(n-1) > αn-2+ αn-3= αn-1.
This completes the proof. QED
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MATHEMATICAL INDUCTION

Lamé Theorem
gcd(a,b) by Euclidean algorithm, the number of divisions ≤ 5k
where b < 10k and a≥b.

RECURSIVE DEFINITION

Find gcd(a,b) where a≥b.
Let a = r0 and b = r1.
Rewrite r0 = r1q1 + r2 where 0 ≤ r2 < r1

r1 = r2q2 + r3 where 0 ≤ r3 < r2
r2 = r3q3 + r4 where 0 ≤ r4 < r3
…
rn-2 = rn-1qn-1 + rnwhere 0 ≤ rn < rn-1
rn-1 = rnq1
gcd(a,b) = rn and 
The number of divisions = n.

MATHEMATICAL INDUCTION

Lamé Theorem
gcd(a,b) by Euclidean algorithm, the number of divisions ≤ 5k
where b < 10k and a≥b.

RECURSIVE DEFINITION

Then r1 > r2 > r3> … > rn-1 >rn ≥ 1 = f(2).
rn-1 ≥ 2rn ≥ 2f(2) = f(3)
rn-2 ≥ rn+rn-1 ≥ f(2)+f(3) = f(4)
rn-3 ≥ rn-1+rn-2 ≥ f(3)+f(4) = f(5)
…
r2 ≥ r3 + r4 ≥ f(n-1)+f(n-2) = f(n).

b = r1 ≥ r2 + r3 ≥ f(n)+f(n-1) = f(n+1)
> αn-1.
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MATHEMATICAL INDUCTION

Lamé Theorem
gcd(a,b) by Euclidean algorithm, the number of divisions ≤ 5k
where b < 10k and a≥b.

RECURSIVE DEFINITION

b > αn-1.
Since log10α ∼ 0.203 > 1/5.

log10b > log10αn-1 > (n-1)/5.
Let b < 10k.

(n-1)/5 < k.
Since n is an integer, then n-1 ≤ 5k.
This completes the proof. QED.

MATHEMATICAL INDUCTION

Example: Let S be defined recursively by
• 3 ∈ S
• if x,y ∈ S, then x+y ∈ S.
Show that S is the set of positive number 

divisible by 3.

RECURSIVE DEFINITION

Proof: Let A be a set of positive integer divisible by 
3. We show that S=A or A⊂ S and S⊂ A.
We have to show A⊂ S. Let P(n) be “3n belongs to S”.
Since 3 is in S, it is clear that P(1) is true.
Assume that ∀ n P(n)→P(n+1). Suppose P(n) is true.
But P(n+1) = 3(n+1) = P(n)+3 which is in S.
then P(n+1) is true.
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MATHEMATICAL INDUCTION

Example: Let S be defined recursively by
• 3 ∈ S
• if x,y ∈ S, then x+y ∈ S.
Show that S is the set of positive number 

divisible by 3.

RECURSIVE DEFINITION

Proof: Now we show that S⊂ A.
It is clear that 3|3, then 3 is in A.
We show that if x∉ A, then x∉ S.
Let x∉ A, then 3⌿x. So for all integers k, x ≠ 3k = 3+3+…+3.
Since all elements in S excluded 3 are generated by the 
second rules, they should be written in the form of the sum of 
3. This shows that x∉ S. This completes the proof. QED

k times

MATHEMATICAL INDUCTION

GOLDBACH’s conjecture
Christian Goldbach

1690-1764

PROBLEM

Every even positive 
integer greater than 4 is 
the sum of two primes.

No counterexample has been 
found, although it has been 
verified for all even positive 

integers up to 1014.
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Recursive AlgorithmS
We reduce the solution to a 
problem with a particular set 
of input to the solution of the 
same problem with smaller 

input values.

Recursive AlgorithmS
Definition
An algorithm is called recursive if it solves a 
problem by reducing it to an instance of the same 
problem with smaller input.

Example: Given a positive integer n, find an.
By recursively definition of an, an = an-1 × a.
Then an algorithm Power(a,n) can be solved by 
Power(a,n-1) and so on.

Power(a,n)
If (n=1) then Power(a,1) := 1

else Power(a,n) := Power(a,n-1)×a
end.
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Recursive AlgorithmS
Example : Binary search algorithm

181514118752

IS 14 IN THIS TABLE ?

Recursive AlgorithmS
Example : Binary search algorithm

181514118752

IS 14 IN THIS TABLE ?
14 ≥11 YES
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Recursive AlgorithmS
Example : Binary search algorithm

181514118752

IS 14 IN THIS TABLE ?
14 ≥11 YES
14 ≥15 NO

Recursive AlgorithmS
Example : Binary search algorithm

181514118752

IS 14 IN THIS TABLE ?
14 ≥11 YES
14 ≥15 NO
14 ≥14 YES



34

Recursive AlgorithmS
Example : Binary search algorithm

BINARYSEARCH(x,s,e)

begin

m :=  (s+e)/2 

if x = m then return m.

if s = e then return 0.

if x > m then s := m

else e := m.

return BINARYSEARCH(x,s,e)

end

Recursive AlgorithmS
Example : Find nth Fibonacci number

FIBO(n)

begin

if n = 0 then return 0.

if n = 1 then return 1.

return FIBO(n-1)+FIB(n-2).

end
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Recursive AlgorithmS
Example : Find nth Fibonacci number

FIBO(0)FIBO(1)

FIBO(2)

FIBO(1)

FIBO(3)

FIBO(4)

FIBO(0)FIBO(1)

FIBO(2)

Recursive AlgorithmS
Example : Find nth Fibonacci number

class Fibo{

public static void main(String[] args){

int x = 0; int y = 1; System.in.read(int n);

if (n=0) System.out.println(0);

if (n=1) System.out.println(1);

if (n>1)

for (int j = 1; j < n) {

z = x + y; x = y; y = z}

System.out.println(z);

}

}
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Program VerificatioN
PROGRAM IS CORRECT

ANSWER IS OBTAINED.
INITIAL ASSERTION
FINAL ASSERTION

PROGRAM ALWAYS TERMINATES.

PARTIAL CORRECTNESS

Program VerificatioN
DEFINITION
A program or program segment S is said to be 
partially correct with respect to the initial 
assertion p and the final assertion q if whenever p 
is true for the input values of S and S terminates, 
the q is true for the output values of S, denoted 
by p{S}q, called Hoare triple.

EXAMPLE
Let p:x=1, and q:z=3 with S={y:=2; z:=x+y;}.

Thus p{S}q is true.
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Program VerificatioN
DEFINITION
A program or program segment S is said to be 
partially correct with respect to the initial 
assertion p and the final assertion q if wherever p 
is true for the input values of S and S terminates, 
the q is true for the output values of S, denoted 
by p{S}q, called Hoare triple.

RULE OF INFERENCE (composition rule)

p{S}q ; q{R}r ∴ p{S;R}r

Program VerificatioN
STATEMENT: if (condition) S.

RULE OF INFERENCE
(p∧ condition){S}q ;
(p∧¬ condition)→q ;
∴ p{if(condition)S}q.

EXAMPLE Show that p{if(x<0) x:=0}q where q:x≥0.
In the case that p:x<0, we have p∧ (x<0) is true.

(p∧ (x<0)){S}q is true.
In the case that p:x≥0, we have that p∧¬ (x<0) is true.

(p∧¬ (x>0))→q is true.
Thus p{if(condition) S}q is true.

CONDITION STATEMENT
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Program VerificatioN
STATEMENT: if (condition) S1 else S2.

RULE OF INFERENCE
(p∧ condition){S1}q ;
(p∧¬ condition){S2}q ;
∴ p{if(condition)S1 else S2}q.

EXAMPLE Show that p{if(x<0) y:=-x else y:=x}q where q:y≥0.
In the case that p:x<0, we have p∧ (x<0) is true.

(p∧ (x<0)){S1}q is true.
In the case that p:x≥0, we have that p∧¬ (x<0) is true.

(p∧¬ (x>0)){S2}q is true.
Thus p{if(condition) S1 else S2}q is true.

CONDITION STATEMENT

Program VerificatioN
STATEMENT: while (condition) S.

RULE OF INFERENCE
(p∧ condition){S}p ;
∴ p{while(condition) S}(¬condition∧ p).

EXAMPLE
i :=1; factorial := 1;
while i < n { ++i ; factorial:=factorial*1}

Let p:factorial=i! and i≤n.
We have that (p∧ (i≤n)){S}p is true.
We can conclude that p{while(condition) S}(¬condition∧ p) is 
true.

LOOP INVARIANTS
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Asymptotic notationS
It is the asymptotic 

complexity of an algorithm 
which ultimately determines 
the size of problems that can 
be solved by the algorithm.

Asymptotic notationS
Little-o notation o
Little-omega notation ω
Theta notation Θ
Big-O notation O
Big-omega notation Ω
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Little-o notation
Informally,

saying some equation f(n) = o(g(n)) means f(n) becomes 
insignificant relative to g(n) as n approaches infinity.

More formally 
it means for all c > 0, there exists some k > 0 such that

0 ≤ f(n) < cg(n) for all n ≥ k.
The value of k must not depend on n, but may depend on c.

Note:
As an example, f(n) = 3n + 4 is o(n2) since for any c 
we can choose k > (3+ (9+16c))/2c. 
3n + 4 is not o(n). o(f(n)) is an upper bound.

That is 
o(g(n)) = {f(n) | limn→∞(f(n)/g(n))=0}.

ω notation
Informally,

saying some equation f(n) = (g(n)) means g(n) becomes 
insignificant relative to f(n) as n goes to infinity.

More formally,
it means that for any positive constant c, there exists a 
constant k, such that

0 ≤ cg(n) < f(n) for all n ≥ k.
The value of k must not depend on n,
but may depend on c.

That is
ω(g(n)) = {f(n) | limn→∞(f(n)/g(n))=∞ }.
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Θ notation
Informally,

saying some equation f(n) = Θ(g(n)) means it is within a constant 
multiple of g(n).

More formally,
it means there are positive constants c1, c2, and k, such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ k.

The values of c1, c2, and k must be fixed for the function f 
and must not depend on n.

That is
Θ(g(n)) = {f(n) | limn→∞(f(n)/g(n))=c,c≠0,c≠∞}.

Big-O notation
Informally,

saying some equation f(n) = O(g(n)) means it is less than some 
constant multiple of g(n).

More formally
it means there are positive constants c and k, such that

0 ≤ f(n) ≤ cg(n) for all n ≥ k.

The values of c and k must be fixed for the function f and 
must not depend on n.

That is
O(g(n)) = o(g(n))∪Θ (g(n)).
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Ω notation
Informally,

saying some equation f(n) = Ω(g(n)) means it is more than some 
constant multiple of g(n).

More formally,
it means there are positive constants c and k, such that

0 ≤ cg(n) ≤ f(n) for all n ≥ k.

The values of c and k must be fixed for the function f and
must not depend on n.

That is
Ω(g(n)) = ω(g(n))∪Θ (g(n)).

Asymptotic Notations

c1g(x)

c2g(x)

f(x)

f(x) = Ω(g(x))
For all x ≥ k2,

f(x) ≥ c1g(x).

f(x) = O(g(x))
For all x ≥ k1, 

f(x) ≤ c2g(x).

f(x) = Θ(g(x))
For all x ≥ k1, k2,

c1g(x) ≤ f(x) ≤ c2g(x).

k1 k2

x
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Asymptotic Notations

SPECIAL ORDERS OF GROWTH
constant : Θ( 1 ) 
logarithmic : Θ( log n )
polylogarithmic : Θ( logc n ) ,  c ≥ 1
sublinear : Θ( na ) , 0 < a < 1 
linear : Θ( n ) 
quadratic : Θ( n2 ) 
polynomial : Θ( nc ) ,  c ≥ 1
exponential : Θ( cn ) ,  c > 1


