

การบรรยายภาษาแบบสม่ำเสมอ Kleene star

Definition:

The simple expression x^* will be used to indicate some sequence of x's (may be none at all).

We also define $x^0 = \Lambda$.

The star is as an unknown power or undetermined power. This notation can be used to help us define languages by writing L = language(x*)

where $L = \{ \Lambda \text{ and } x^n \text{ for } n = 1 \ 2 \ 3 \ ... \}.$

การบุรรยายภาษาแบบสม่ำเสมอ ตัวอย่าง

REGULAR EXPRESSION

การบุรรยายภาษาแบบสม้ำเสมอ การบวก (union)

Definition:

The plus expression x + y where x and y are string of characters from an alphabet, we mean "either x or y, but not both".

Example:

L = language((a+b)c*) $L = \{ a b ac bc acc bcc accc bccc ... \}.$

______ การบรรยายภาษาแบบสม่ำเสมอ

Exercise:

- L = language(a*+(a+bb)*c*+d)
- Is Λ in this language?
- Find words with length 1, 2, 3 and 4.
- Compare L with language(a*c*+(bb)*c*+d).

REGULAR EXPRESSION

Finite language

The language L where

L = { aaa aab aba abb baa bab bba bbb }

can be expressed by $L = language((a+b)^3)$ or

L = language((a+b)(a+b)(a+b)).

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Definition:

The set of regular expressions is defined by the following

rules:

Rule1: Every element of alphabet Σ is a regular

expression.

Rule2: Λ is a regular expression.

Rule3: For every regular expressions r and s,

then so are: (r) rs r+s r*

Rule4: Nothing else is not a regular expression.

REGULAR EXPRESSION

______ การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Example:

Given a regular expression (a+b)*a(a+b)*+b(a+b)* This regular expression can be written more simple expression, as follow:

(a+b)(a+b)*.

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Finite & Positive closure:

Is $(a+b)^4$ a regular expression?

This can be accepted to be a regular expression, since it equals to (a+b)(a+b)(a+b) which is a regular expression.

Is $(a+c)^+$ a regular expression?

This is also be accepted to be a regular expression since it represents a regular expression $(a+c)(a+c)^*$.

REGULAR EXPRESSION

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

ทำอย่างไร

Define the set A by a regular expression.

 $A = \{ \Lambda \text{ b ab bb} \}$

abaa abab abbb bbbb

abaaa abaab ababb abbbb bbbbb ... }.

The regular expression is (aba*)*b*

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

แบบฝึกหัด

Given a regular expression
(a+b)*ab(a+b)*+E
where E is unknown expression.
Find E if this expression equals (a+b)*.

The regular expression E is b^*a^* .

REGULAR EXPRESSION

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Definition:

Let S and T be sets of strings of letters. The product set of S and T is the set of all combinations of a string from S concatenated with a string from T in that order.

 $ST = \{ uv : u \in S \text{ and } v \in T \}$

Example: $S = \{a bb aba \}$

 $T = \{ a ab \}$

then ST = { aa aab bba bbab abaa abaab }.

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Example:

$$P = \{ \Lambda \text{ aa b } \} \text{ and } Q = \{ \Lambda \text{ ba } \}$$

Then $PQ = \{ \Lambda \text{ aa b ba aaba bba } \}$.

REGULAR EXPRESSION

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Definition:

A language L is called a language associated with regular expression r if

$$L = language(r)$$
.

We also have

$$L_1L_2 = language(r_1r_2)$$

$$L_1+L_2 = language(r_1+r_2)$$

$$L_1^* = language(r^*).$$

regular expression การบรรยายภาษาแบบสม่ำเสมอ REGULAR EXPRESSIONS

ทฤษฎีบท

If L is a finite language (only finitely many words), then L can be defined by a regular expression. In other words, all finite languages are regular.

regular expression การบรรยายภาษาแบบสม่ำเสมอ regular expressions

What strings contain in the language?

- \Box Given $(a+b)*(aa+bb)(a+b)*+(\Lambda+b)(ab)*(\Lambda+a)$
- □ Consider the regular (a+b)*(aa+bb)(a+b)*, strings that contain a double letter.
- \square { Λ a b ab ba aba bab abab baba ... } is the set of all strings that do not contain a double letter.
- \Box (Λ +b)(ab)*(Λ +a) defines all strings without a double letter.
- \Box This language is (a+b)*.

การบรรยายภาษาแบบสม่ำเสมอ

REGULAR EXPRESSIONS

Consider a regular expression (aa+bb+(ab+ba)(aa+bb)*(ab+ba))*.

This represents the collection of all words that are EVEN-EVEN made up of three type: $L_{ANGUAGE}$

type1 aa

bb type2

(ab+ba)(aa+bb)*(ab+ba)type3

Every words contain an even number of a and even number of b.

โจทย์ | น่าคิด

 $oldsymbol{\hat{\eta}}$ งหาภาษา L ที่นิยามบน $\sum = \{0,1\}$ ที่สอดคล้องกับ

- L ไม่เป็น {∧}
- เ ไม่เป็น ∑*

โดยที่ L=Lst

โจทย์

น่าคิด

ก $\mathbf{\hat{n}}$ หนดให้ภาษา L และ S นิยามบน $\mathbf{\Sigma} = \{0,1\}$ ที่ สอดคล้องกับ

- \blacksquare LS = SL
- L ไม่เป็น subset ของ S
- S ไม่เป็น subset ของ L
- ทั้ง L และ S ไม่เป็น {\\}

โจทย์

น่ากิด

 $\hat{\mathbf{n}}$ าหนดให้ภาษา L และ S นิยามบน $\sum = \{0,1\}$ ที่

- \blacksquare LS = SL
- L เป็น proper nonempty subset ของ S
- L ไม่เป็น {Λ}