

FINITE AUTOMATA

ประเด็นที่ควรสนใจ

How to know which word is in the given language?

How to know if any given word is in the given language?

FINITE AUTOMATA

ออโตมาตาจำกัด นิยาม

A finite automaton or finite state machine (abbreviated FA) is a 5-tuple (Q, Σ , q₀, δ , A) where

- •Q means a finite set of states.
- • Σ is a finite input alphabet.
- • $q_0 \in Q$ named Initial state.
- \bullet A \subseteq Q , A is the set of all accepted states.
- δ is a function from Q× Σ to Q, called transition function.

FINITE AUTOMATA

ออโตมาตาจำกัดตัวอย่าง

Suppose that $\Sigma = \{0, 1\}$, and $Q = \{q_0, q_1, q_2\}$. The transition function δ is defined as follow;

 $\delta(q_0,0) = q_0$ $\delta(q_0,1) = q_1$

 $\delta(q_1,0)=q_2$

 $\delta(q_2,0) = q_0$

 $\delta(\mathbf{q}_2,1)=\mathbf{q}_1$

The initial state is q_0 .

The accepted or final state is q_2 .

Example:

Consider this string 01001. Start at the initial state q_0 ,

 $\delta(q_0,0)$ gives state q_0 . $\delta(q_0,1)$ gives state q_1 .

 $\delta(q_1,0)$ gives state q_2 . $\delta(q_2,0)$ gives state q_0 .

 $\delta(q_0, 1)$ gives state q_0 .

It ends at the state q₁ which is not the accepted state.

We say that it **rejects** the input, otherwise we say it accepts.

FINITE AUTOMATA

Suppose that $\Sigma = \{0, 1\}$, and $Q = \{q_0, q_1\}$. The transition function δ is defined as follow;

$$\delta(q_0,0) = q_0$$

$$\delta(q_0,1) = q_1$$

$$\delta(q_1,0) = q_0$$

$$\delta(q_1,1) = q_1$$

The initial state is q_0 .

The accepted state is q_1 .

Example:

Consider this string 0101.

Start:
$$\delta(q_0,0) \rightarrow q_0$$
.

$$\delta(q_0,1) \rightarrow q_1$$

$$\begin{array}{l} \delta(q_0,1) \rightarrow q_0, \\ \delta(q_0,1) \rightarrow q_1, \\ \delta(q_1,0) \rightarrow q_0, \\ \delta(q_0,1) \rightarrow q_1. \end{array}$$

$$\delta(q_0,1) \rightarrow q_1$$

Then it accepts 0101.

Consider 0110.

Start: $\delta(q_0, 0) \rightarrow q_0$.

 $\delta(q_0,1) \rightarrow q_1$.

 $\delta(q_1,1)\to q_1.$

 $\delta(q_1,0) \rightarrow q_0$.

Then it rejects 0110.

FINITE AUTOMATA

ออโตมาตาจำกัดตัวอย่าง

Suppose that $\Sigma = \{0, 1\}$, and $Q = \{q_0, q_1\}$.

The transition function δ is defined as follow;

$$\delta(q_0,0) = q_0$$

$$\delta(q_0,1) = q_1$$

$$\delta(q_1,0) = q_0$$

$$\delta(q_1,1) = q_1$$

The initial state is q_0 .

The accepted state is q_1 .

TABLE:

State/input 0

1

 q_1 q_0 q_0 q_1 q_0 q_1

REPRESENTATION BY TABLE

Find the language accepted by this finite machine.

ออโตมาตาจำกัด ภาษา

Studies finite automata for two different angles:

- •Given a language, can we build a machine for it?
- •Given a machine, can we deduce its language?

MACHINES AND THEIR LANGUAGES

ออโตมาตาขำกัด ภาษา

Suppose we want to build a finite machine that accepts all words in the language 0(1+0)*.

ออโตมาตาชำกัด ภาษา

From example, we can ask a question

Is there always at least one finite automaton that accepts each possible language?

This is related to the question: Can all languages be recognized by a finite automaton?

MACHINES AND THEIR LANGUAGES

