

## TRANSDUCER

# วัตถุประสงค์

The question of finite automata represent physical machines

Investigate two models

- Mealy machine (G.H.Mealy, 1955)
- Moore machine (E.F. Moore, 1956)

Original purpose : design model for sequential circuits.



A Moore machine is a collection of five things: Finite set of states Q where  $q_0$  = initial state. Input alphabet  $\Sigma$  = { a, b, c, ... } (letters). Output alphabet  $\Gamma$  = {x, y, z, ... } (characters). Transition function  $\delta$ : Q ×  $\Sigma$   $\rightarrow$  Q. Output function  $\omega$ : Q  $\rightarrow$   $\Gamma$ .











#### TRANSDUCER

การสมมูลกันของเครื่องจักร EQUIVALENCE

# นิยาม

Two machines are equivalent if for the same input string, two machines result in the same output string.

#### หมายเหตุ

Mealy machine can be equivalent to a Moore machine with deleting its automatic start output.

#### TRANSDUCER

การสมมูลกันของเครื่องจักร
EQUIVALENCE SOME RESULTS

ทฤษฎีบท

Given a Moore machine, there is a Mealy machine that is equivalent to it.





















### LEFT (RIGHT) SEQUENTIAL STATE MACHINE

A state machine M is said to be a left (right) sequential state machine if the input of M is taken into account serially in the most left (right) character first mode.

#### Note:

Automata with output is usually called a transducer or 2-tape automata.



