

ประเด็นที่สนใจ

The number of distinct states the finite state machine needs in order to recognize a language is related to the number of distinct strings that must be distinguished from each other.

สามารถแยกความแตกต่างใต้ DISTINGUISHABLE

นิยาม

Let L be a language in Σ^* . Two strings x and y in Σ^* are distinguishable with respect to L

if there is a string z in Σ^* so that exactly one of the strings xz and yz is in L.

The string z is said to distinguish x and y with respect to L.

NUMBER OF STATES

สามารถแยกความแตกต่างใต้ DISTINGUISHABLE

นิยาม

Let L be a language in Σ^* .

Two strings x and y in Σ^* are

distinguishable with respect to L

if $L/x \neq L/y$ where

$$L/x = \{ z \in \Sigma^* \mid xz \in L \}$$

$$L/y = \{ z \in \Sigma^* \mid yz \in L \}.$$

สามารถแยกความแตกต่างใช้ DISTINGUISHABLE

EXAMPLE

Let $\Sigma = \{ 0, 1 \}.$

Let L be the language associated with (0+1)*10.

Two strings x = 01101 and y = 010 in Σ^* . Since there is a string z = 0 in Σ^* such that xz = 011010 is in L but yz = 0100 is not in L, x and y are distinguishable with respect to L.

We may say that x and y are indistinguishable with respect to L if there is no such string z.

The strings 0 and 100 are indistinguishable with respect to L.

NUMBER OF STATES

อำนวนสถานฮ number of states temma

Suppose that $L \subseteq \Sigma^*$, and $M = (Q, \Sigma, q_0, A, \delta)$ If x and y are two strings in Σ^* for which

$$\delta^{\star}(\mathsf{q}_0,\mathsf{x}) = \delta^{\star}(\mathsf{q}_0,\mathsf{y})$$

then x and y are

indistinguishable with respective to L.

Note: $\delta^*(q_0,x) = q_j$ means that there is a path from q_0 to q_i with respect to x:

$$\delta^*(q_0,x) = \delta((...\delta(\delta(q_0,x_1),x_2),...),x_j) = q_j$$

where $x = x_1 x_2 ... x_j$.

ข้านวนสถานซ NUMBER OF STATES

LEMMA

Suppose that $L \subseteq \Sigma^*$, and $M = (Q, \Sigma, q_0, A, \delta)$. If x and y are two strings in Σ^* for which $\delta^*(q_0, x) = \delta^*(q_0, y)$

then x and y are

indistinguishable with respective to L.

Proof: Let z be any string in $\Sigma^{\star}.$ Consider xz and yz,

We have that $\delta^*(q_0, xz) = \delta^*(\delta^*(q_0, x), z)$ $\delta^*(q_0, yz) = \delta^*(\delta^*(q_0, y), z).$

Then $\delta^*(q_0, xz) = \delta^*(q_0, yz)$. Two strings xz and yz

are either both in L or both not in L.

Therefore, x and y are indistinguishable with respect to L.

QED.

NUMBER OF STATES

อำนวนสถานฮ NUMBER OF STATES THEOREM

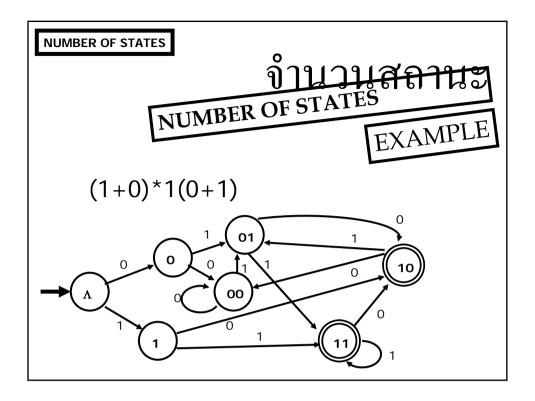
Suppose that $L \subseteq \Sigma^*$, and for some positive integer n, there are n strings in Σ^* , any two of which are distinguishable with respect to L.

Then there can be no finite state machine recognizing L with fewer than n states.

Proof: Suppose $x_1, x_2, ..., x_n$ strings are distinguishable with respect to L. Assume that M is a finite state machine with fewer than n states. By the pigeonhole principle, the state $\delta^*(q_0, x_1), \ \delta^*(q_0, x_2), ... \delta^*(q_0, x_n)$ cannot all be distinct, so for some $i \neq j \ \delta^*(q_0, x_i) = \delta^*(q_0, x_i)$.

Since x_i and x_j are distinguishable with respect to L, it follows from Lemma that M cannot recognize L.

QED.



PALINDROME language over the alphabet {0,1} cannot be accepted by any finite automaton.

Proof:

Any two strings in {0,1}* are distinguishable with respect to PALINDROME language. QED.

EXAMPLE

For two strings, 010101 and 1011101 Rejected accepted