

KLEENE'S THEOREM

วัตถุประสงค์

UNIFICATION

Kleene's theorem, 1956

All three methods of defining languages regular expression, acceptance by finite automata and acceptance by transition graph are equivalent

KLEENE'S THEOREM

วัตถุประสงค์

It is clear that a finite automaton is a transition graph.

UNIFICATION

Kleene's theorem, 1956

- ■Language accepted by a finite automaton can be defined by a transition graph.
- ■Language accepted by a transition graph can be defined by a regular expression.
- ■Language generated by a regular expression can be defined by a finite automaton.

KLEENE'S THEOREM

UNIFICATION

Kleene's theorem, 1956

ทฤษฎีบท

วิธีพิสูจน์

Proof:

Given a transition graph TG.

Find a regular expression that defines the same language.

Construct an algorithm that satisfies two criteria.

- ■Work for every conceivable transition graph
- •Guarantee to finish its job in a finite time.

UNIFICATION

Kleene's theorem, 1956

Proof:

Given a regular expression.

Find an automaton that defines the same language.

Construct an algorithm that satisfies two criteria.

- •Accepts any particular letter of the alphabet. (or Λ)
- ■Close under +, concatenation and Kleene's star.

KLEENE'S THEOREM

UNIFICATION

Kleene's theorem, 1956

ทฤษฎีบท

วิธีพิสูจน์

Let FA_1 accepts the language defined by regular expression r_1 , FA_2 accepts the language defined by regular expression r_2 . Then there is a FA_3 accepts the language (r_1+r_2) .

Then there is a FA_4 accepts the language r_1r_2 .

KLEENE'S THEOREM

UNIFICATION

Kleene's theorem, 1956

Let FA_1 accepts the language defined by regular expression r_1 , FA_2 accepts the language defined by regular expression r_2 . Then there is a FA_3 accepts the language (r_1+r_2) .

Then there is a FA_4 accepts the language r_1r_2 .

Then there is a FA_5 accepts the language r_1^* .