

NONDETERMINISTIC FA

วัตถุประสงค์

We introduce a conceptual machine that occurs in practice more frequently than the transition graph.

A nondeterministic finite state machine (NFA) is a transition graph with

- •a unique start state
- •each of its edge labels is a single alphabet.

NONDETERMINISTIC FA

NONDETERMINISTIC ออโตมาตาจำกัด

For a NFA, $M = (Q, \Sigma, q_0, \delta, A)$ and any $p \in Q$, $\delta^*(p, \Lambda) = \{p\}$. For any $p \in Q$ and $x = a_1 a_2 a_3 ... a_n \in \Sigma^*$ (with $n \ge 1$) $\delta^*(p,x)$ is the set of all states q for which there is a sequence of states $p=p_0, p_1p_2...p_{n-1}, p_n=q$ satisfying

• $p_i \in \delta(p_{i-1}, a_i)$ for each i with $1 \le i \le n$.

$$\delta^*(p,ya_n) = \bigcup_{\text{all } r \in \delta^*(p,y)} \delta(r,a_n)$$

NONDETERMINISTIC FA

nondeterministic ออโตมาตา

ACCEPTANCE BY A NFA

The set of all strings that leave the NFA in the final state is called the language defined by the NFA or the language associated with this machine.

NONDETERMINISTIC FA

NONDETERMINISTIC

ออ โตมาตาจำกัด

WITH Λ-TRANSITION

นิยาม

A nondeterministic finite automaton with Λ -transition (NFA- Λ) is a 5-tuple (Q, Σ , q₀, δ , A) where

- •Q means a finite set of states.
- • Σ is a finite input alphabet.
- • $q_0 \in Q$ named Initial state.
- $A \subseteq Q$, A is the set of all accepted states.
- δ is a function from $Q \times (\Sigma \cup \{\Lambda\})$ to P(Q) where P(Q) is the power set of Q.

NONDETERMINISTIC FA

NONDETERMINISTIC

ออ โตมาตาจำกัด

WITH A-TRANSITION

For an NFA- Λ M=(Q, Σ , q_0 , δ , A) states p and $q \in Q$ and a string $x = a_1 a_2 a_3 ... a_n \in \Sigma^*$, we will say M moves from p to q by a sequence of transitions corresponding to x if

there exist an integer $m \ge n$, a sequence $b_1b_2b_3...b_m \in \Sigma \cup \{\land\}$ satisfying $x = b_1b_2b_3...b_m$ and a sequence of states $p = p_0, p_1, p_2, ..., p_m = q$ so that for each $i, 1 \le i \le m, p_i \in \delta(p_{i-1}, b_i)$.

NONDETERMINISTIC ออโตมาตาจำกัด with a-transition

there exist an integer $m \ge n$, a sequence $b_1b_2b_3...b_m \in \Sigma \cup \{\wedge\}$ satisfying $x = b_1b_2b_3...b_m$ and a sequence of states $p = p_0, p_1, p_2, ..., p_m = q$ so that for each $i, 1 \le i \le m, p_i \in \delta(p_{i-1}, b_i)$.

For $x \in \Sigma^*$ and $p \in Q$, $\delta^*(p,x)$ is the set of all states $q \in Q$ such that there is a sequence of transitions corresponding to x by which M moves from p to q.

Let $M=(Q, \Sigma, q_0, \delta, A)$ be a NFA- Λ . Let S be any subset of Q.

The Λ -closure of S is the set $\Lambda(S)$ defined as follows:

- Every element of S is an element of $\Lambda(S)$.
- For any $q \in \Lambda(S)$, every element of $\delta(q, \Lambda)$ is in $\Lambda(S)$.
- No other elements of Q are in $\Lambda(S)$.

For a NFA- Λ M = (Q, Σ , q_0 , δ , A).

The extended transition function $\delta^*: Q \times \Sigma^* \to P(Q)$ is defined as follows: For any $q \in Q$, $\delta^*(q,\Lambda) = \Lambda(\{q\})$

For any $q \in Q$, $y \in \Sigma^*$ and $a \in \Sigma$,

$$\delta^*(q,ya) = \Lambda(\cup_{r \in \delta^*(q,y)} \delta(r,a))$$

A string x is accepted by M if $\delta^*(q_{0'}x) \cap A \neq \emptyset$.

The language recognized by M is the set L(M) of all strings accepted by M.

state machine accepts exactly the

same language.

state machine with Λ , there is some finite state machine accepts exactly the same language.

