คุณสมบัติความสม่ำเสมอ REGULARITY A language is regular (describable by a regular expression) if and only if it can be accepted by a finite automaton. What inherent property of a language identifies it as being regular? ## คุณสมบัติความสม่ำเสมอ REGULARITY PALINDROME is not regular. Since there are infinitely many distinguishable. Remark Language L contains infinitely many "pairwise distinguishable" with respect to L then L cannot be regular. #### REGULAR DECIDABLE ## คุณสมบัติความสม่ำเสมอ REGULARITY What is the relationship between regular and distinguishable? Define a relation: We will say that two strings are equivalent if they are indistinguishable with respect to L. ความสามารถในการแยกความไม่แตกต่างกันได้ # INDISTINGUISHABILITY Let L be any language in Σ^* . The relation I_L on Σ^* (the indistinguishability relation) is defined as follows: For any two strings x, y in Σ^* , xI_Ly if and only if x and y are indistinguishable with respect to L. In other words, xI_Ly if for any z in Σ^* , either xz and yz are both in L or xz and yz are both in L'. #### **REGULAR DECIDABLE** ความสามารถในการแยกความไม่แตกต่างกันได้ ### ตัวอย่าง INDISTINGUISHABILITY L be a language over $\Sigma=(0, 1)$, defined as follows; $x \in L$ with length(x) > 0, x does not contain "double characters". #### Regular expression of L = $(0+\Lambda)(10)*(1+\Lambda)$. For instance, 0101 I_L 10101 since they are indistinguishable with respect to L. For any $z \in \Sigma^*$, if 0101z is in L, then 10101z is also in L, if 0101z is not in L, then 10101z is not in L. ความสามารถในการแยกความไม่แตกต่างกันได้ #### **LEMMA** INDISTINGUISHABILITY For any language L, I_L is an equivalence relation on Σ^* . Let x, y and z be strings in Σ^* . Reflexive: xI_Lx Symmetric: if xI_Ly then yI_Lx Transitivity: if xI_Iy and yI_Lz then xI_Lz . #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ #### **Proof** INDISTINGUISHABILITY It is obvious for reflexive and symmetric. Let x, y and z be strings in Σ^* . Given xI_Ly and yI_Lz , and for any $a \in \Sigma^*$. Suppose that xa is in L, we will show that za is in L. Since xa is in L and xI_Ly , ya is also in L. Since ya is in L and yI_Lz , za is in L. thus xI_Lz . Q.E.D. ความสามารถในการแยกความไม่แตกต่างกันได้ ตัวอย่าง INDISTINGUISHABILITY L be a language over $\Sigma=(0, 1)$, defined as follows; $x \in L$ with length(x) > 0, x does not contain "double characters". Regular expression of L = $(0+\Lambda)(10)*(1+\Lambda)$. $$[\Lambda] = \{\Lambda\}$$ $$[1] = \{1, 01, 101, 0101, ...\}$$ $$[0] = \{0, 10, 010, 1010, ...\}$$ $$[00+11] = \{00, 11, 000, 011, 111, ...\}$$ #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ ข้อสังเกตุ INDISTINGUISHABILITY If the set of all equivalence classes of $I_{\rm L}$ is finite, then it is possible to construct an DFA recognizing L in terms of the equivalence classes of $I_{\rm L}$. ความสามารถในการแยกความไม่แตกต่างกันได้ INDISTINGUISHABILITY ข้อสังเกตุ $$\begin{array}{c} \text{Automaton } M\text{=}(Q,\, \Sigma,\, q_0,\, A,\, \delta) \\ L_q \text{=} \left\{\, x \in \Sigma \,\mid\, \delta^{\star}(q_0,\, x) \text{=} \, q\,\right\} \\ \text{for } q \in \, Q. \end{array}$$ Lq is the set of all strings that end in the state q of M. What is the relationship between them? ความสามารถในการแยกความไม่แตกต่างกันได้ INDISTINGUISHABILITY หมายเหตุ If number of classes of I_L and L_q are the same, then - •two partitions are identical and - •FA is the fewest possible states recognizing L. For strings x in Σ^* and a in Σ $$\delta([x], a) = [xa].$$ #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ **LEMMA** INDISTINGUISHABILITY $I_{\rm L}$ is right invariant with respect to concatenation. For any x, y in Σ^* , and any a in Σ , if x I_L y, then xa I_L ya. Equivalently, if [x] = [y], then [xa] = [ya]. #### Proof: Let $x I_L y$. Then x and y are indistinguishable with respect to L. For any z in Σ^* , if xz is in L, then yz is in L. Consider xaz, for any a in Σ^* , if xaz is in L and let z' = az, then yz' is also in L. Thus xa I_L ya. Q.E.D. ความสามารถในการแยกความไม่แตกต่างกันได้ ทฤษฎีบท INDISTINGUISHABILITY Let $L \subseteq \Sigma^*$, and Q_L be the set of equivalence classes of the relation I_L on Σ^* . If Q_L is a finite set, then M_L = $(Q_L, \Sigma, q_0, A_L, \delta)$ is a finite automaton accepting L, where - $\bullet q_0 = [\Lambda]$ - $\bullet A_L = \{ q \text{ in } Q_L \mid q \cap L \neq \emptyset \}$ and - • δ : $Q_L \times \Sigma \to Q_L$ is defined by $\delta([x],a) = [xa]$. Furthermore, M_L has the fewest states of any FA accepting L. #### **REGULAR DECIDABLE** ความสามารถในการแยกความไม่แตกต่างกันได้ พิสูจน์ INDISTINGUISHABILITY If Q_L is a finite set, then M_L is finite. Now, $M_L = (Q_L, \Sigma, q_0, A_L, \delta)$ recognizes the language L. For any $x \in \Sigma^*$, $x \in L$ if and only if $\delta^*(q_0, x) \in A_L$. Let $x \in L$. Since $x \in [x]$, we have that $x \in [x] \cap L \neq \emptyset$. Since $\delta^*(q_0,x) = \delta([\Lambda],x) = [x] \in A_L$. For $u, v \in \Sigma^*$, $(\delta([u], v) = [uv])$ If $\delta^*(q_0,x) \in A_L$, then $[x] \cap L \neq \emptyset$. Let y be an element in $[x] \cap L$. We have that $y \in L$. x and y are indistinguishable (same class), then $x \in L$. ความสามารถในการแยกความไม่แตกต่างกันได้ ทฤษฎีบท INDISTINGUISHABILITY #### MYHILL-NERODE THEOREM L is a regular if and only if Q_L is finite. Q_L is finite, M_L is also finite. $\delta([x],y) = [xy]$ for any strings x and y in Σ^* . The partition L_q is finer than the partition I_L . #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ ตัวอย่าง INDISTINGUISHABILITY Let L = $\{x \text{ in } \{0, 1\}^* \mid x \text{ ends with } 10 \}$. Consider three strings, Λ , 1 and 10. Ant two of these strings are distinguishable with respect to L. $[\Lambda] = \{ \Lambda, 0, 1, 00, 000, 100, 0000, 0100, \dots \}$ $[1] = \{ 1, 01, 001, 0001, 00001, \dots \}$ $[10] = \{ 10, 010, 110, 0010, \dots \}.$ ความสามารถในการแยกความไม่แตกต่างกันได้ ตัวอย่าง INDISTINGUISHABILITY Let L = $\{x \text{ in } \{0, 1\}^* \mid x \text{ ends with } 10 \}$. Consider three strings, Λ , 1 and 10. Ant two of these strings are distinguishable with respect to L. $M_L = (Q_L, \{0, 1\}, [\Lambda], \{[10]\}, \delta)$ be the FA, and $$\begin{array}{ll} \delta([\Lambda],\,0) = [\Lambda] & \delta([\Lambda],\,1) = [1] \\ \delta([1],\,0) = [10] & \delta([1],\,1) = [1] \\ \delta([10],\,0) = [\Lambda] & \delta([10],\,1) = [1]. \end{array}$$ #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ ตัวอย่าง INDISTINGUISHABILITY Let L = $\{x \text{ in } \{0, 1\}^* \mid x \text{ ends with } 10 \}$. Consider three strings, Λ , 1 and 10. Ant two of these strings are distinguishable with respect to L. โจทย์ น่าคิด กำหนดให้ ภาษา $0^{n}1^{n}$ เมื่อ $n \ge 0$ $\{\Lambda, 01, 0011, 000111, ...\}$ จงแสดงให้เห็นว่า ภาษานี้ไม่เป็นภาษาสม่ำเสมอ #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ ตัวอย่าง INDISTINGUISHABILITY $L = \{ 0^n 1^n \mid n \ge 0 \}$, show that L is not regular. Consider any strings of the form 0^i and 0^j with $i \neq i$. They are distinguished by the string 1^i . They are infinitely many strings of the form 0^i and 0^j . Then there are infinitely many distinguished strings. # โจทย์ # น่าคิด กำหนดให้ ภาษา ww เมื่อ w ∈ Σ * { \(\Lambda \), 00, 11, 0000, 0101, \(\lambda \). จงแสดงให้เห็นว่า ภาษานี้ไม่เป็นภาษาสม่ำเสมอ #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ # ตัวอย่าง INDISTINGUISHABILITY $L = \{ ww \mid w \in \{0, 1\}^* \}$, show that L is not regular. Consider any strings of the form 0^i and 0^j with $i \neq i$. They are distinguished by the string $1^i0^i1^i$. They are infinitely many strings of the form 0^i and 0^j . Then there are infinitely many distinguished strings. ความสามารถในการแยกความไม่แตกต่างกันได้ MINIMAL FINITE STATE MACHINE INDISTINGUISHABILITY Number of equivalence classes = number of states in $M_{\rm L}$ then $M_{\rm L}$ is a minimal finite state machine. Find a pair (L_p, L_q) such that L_p and L_q are in the same class, group it into one class. By contraposition, we will find a pair (L_p, L_q) that they are in difference classes. #### REGULAR DECIDABLE ความสามารถในการแยกความไม่แตกต่างกันได้ MINIMAL FINITE STATE MACHINE INDISTINGUISHABILITY #### **LEMMA** For p and q in Q, p $\not\equiv$ q, if and only if There exists z in Σ^* so that exactly one of the two states $\delta^*(p,z)$ and $\delta(q,z)$ is in A. A pair (p, q) of states for which L_p and L_q are subsets of different equivalence classes, denoted by $p \neq q$. ความสามารถในการแยกความไม่แตกต่างกันได้ MINIMAL FINITE STATE MACHINE INDISTINGUISHABILITY For p and q in Q, $p \neq q$, if and only if there exists z in Σ^* so that **LEMMA** exactly one of the two states $\delta^*(p,z)$ and $\delta(q,z)$ is in A. Proof: Let $p \neq q$. Let x is in L_p and y is in L_q , we have that there exists z in Σ^* , xz and yz are distinguishable, $$\delta^*(\mathbf{p}, \mathbf{z}) = \delta^*(\delta^*(\mathbf{q}_0, \mathbf{x}), \mathbf{z}) = \delta^*(\mathbf{q}_0, \mathbf{x}\mathbf{z})$$ $\delta^*(q,z) = \delta^*(\delta^*(q_0,y),z) = \delta^*(q_0,yz)$ only one is in L. Suppose that only one of $\delta^*(p,z)$ and $\delta(q,z)$ is in A. It means that z distinguishes x in L_p and y in L_q with respect to L. Therefore $p \neq q$. #### **REGULAR DECIDABLE** ความสามารถในการแยกความไม่แตกต่างกันได้ MINIMAL FINITE STATE MACHINE INDISTINGUISHABILITY Consider (p,q) be a distinguishable pair. Let r and s be two states in Q. For some a in Σ , such that $\delta(r,a) = p$ and $\delta(s,a) = q$. Since $$\delta^*(r,az) = \delta^*(\delta^*(r,a)) = \delta^*(p,z)$$ $$\delta^*(s,az) = \delta^*(\delta^*(s,a)) = \delta^*(q,z),$$ we can conclude that (r,s) is also be a distinguishable pair. # REGULAR DECIDABLE POINTING NONREGULAR A Language that cannot be defined by a regular expression is called a nonregular language. Given an infinite regular language L Suppose that there exists a FA with n states associated with L. For any word x in L such that $|x| \ge n$, • consider a path associated with x, $q_0q_1q_2...q_{n+1}$ ■ then, there exists $q_i = q_j$ where $i \neq j$.