

คุณสมบัติความสม่ำเสมอ REGULARITY

A language is regular (describable by a regular expression) if and only if it can be accepted by a finite automaton.

What inherent property of a language identifies it as being regular?

คุณสมบัติความสม่ำเสมอ REGULARITY

PALINDROME is not regular. Since there are infinitely many distinguishable.

Remark

Language L contains infinitely many "pairwise distinguishable"

with respect to L

then L cannot be regular.

REGULAR DECIDABLE

คุณสมบัติความสม่ำเสมอ REGULARITY

What is the relationship between regular and distinguishable?

Define a relation:

We will say that two strings are equivalent if they are indistinguishable with respect to L.

ความสามารถในการแยกความไม่แตกต่างกันได้

INDISTINGUISHABILITY

Let L be any language in Σ^* . The relation I_L on Σ^* (the indistinguishability relation) is defined as follows:

For any two strings x, y in Σ^* , xI_Ly if and only if x and y are indistinguishable with respect to L.

In other words, xI_Ly if for any z in Σ^* , either xz and yz are both in L or xz and yz are both in L'.

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

L be a language over $\Sigma=(0, 1)$, defined as follows; $x \in L$ with length(x) > 0, x does not contain "double characters".

Regular expression of L = $(0+\Lambda)(10)*(1+\Lambda)$.

For instance, 0101 I_L 10101 since they are indistinguishable with respect to L.

For any $z \in \Sigma^*$,

if 0101z is in L, then 10101z is also in L, if 0101z is not in L, then 10101z is not in L.

ความสามารถในการแยกความไม่แตกต่างกันได้

LEMMA

INDISTINGUISHABILITY

For any language L, I_L is an equivalence relation on Σ^* .

Let x, y and z be strings in Σ^* .

Reflexive: xI_Lx

Symmetric: if xI_Ly then yI_Lx

Transitivity: if xI_Iy and yI_Lz then xI_Lz .

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

Proof

INDISTINGUISHABILITY

It is obvious for reflexive and symmetric. Let x, y and z be strings in Σ^* . Given xI_Ly and yI_Lz , and for any $a \in \Sigma^*$. Suppose that xa is in L, we will show that za is in L.

Since xa is in L and xI_Ly , ya is also in L. Since ya is in L and yI_Lz , za is in L. thus xI_Lz . Q.E.D.

ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

L be a language over $\Sigma=(0, 1)$, defined as follows; $x \in L$ with length(x) > 0, x does not contain "double characters".

Regular expression of L = $(0+\Lambda)(10)*(1+\Lambda)$.

$$[\Lambda] = \{\Lambda\}$$

$$[1] = \{1, 01, 101, 0101, ...\}$$

$$[0] = \{0, 10, 010, 1010, ...\}$$

$$[00+11] = \{00, 11, 000, 011, 111, ...\}$$

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

ข้อสังเกตุ

INDISTINGUISHABILITY

If the set of all equivalence classes of $I_{\rm L}$ is finite, then it is possible to construct an DFA recognizing L in terms of the equivalence classes of $I_{\rm L}$.

ความสามารถในการแยกความไม่แตกต่างกันได้

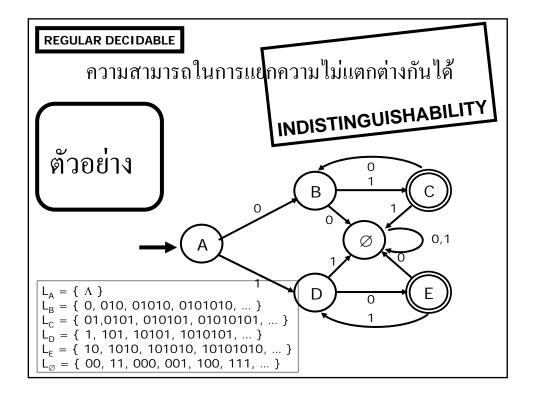
INDISTINGUISHABILITY

ข้อสังเกตุ

$$\begin{array}{c} \text{Automaton } M\text{=}(Q,\, \Sigma,\, q_0,\, A,\, \delta) \\ L_q \text{=} \left\{\, x \in \Sigma \,\mid\, \delta^{\star}(q_0,\, x) \text{=} \, q\,\right\} \\ \text{for } q \in \, Q. \end{array}$$

Lq is the set of all strings that end in the state q of M.

What is the relationship between them?



ความสามารถในการแยกความไม่แตกต่างกันได้

INDISTINGUISHABILITY

หมายเหตุ

If number of classes of I_L and L_q are the same, then

- •two partitions are identical and
- •FA is the fewest possible states recognizing L. For strings x in Σ^* and a in Σ

$$\delta([x], a) = [xa].$$

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

LEMMA

INDISTINGUISHABILITY

 $I_{\rm L}$ is right invariant with respect to concatenation. For any x, y in Σ^* , and any a in Σ ,

if x I_L y, then xa I_L ya.

Equivalently, if [x] = [y], then [xa] = [ya].

Proof:

Let $x I_L y$. Then x and y are indistinguishable with respect to L. For any z in Σ^* , if xz is in L, then yz is in L.

Consider xaz, for any a in Σ^* , if xaz is in L and let z' = az, then yz' is also in L. Thus xa I_L ya. Q.E.D.

ความสามารถในการแยกความไม่แตกต่างกันได้

ทฤษฎีบท

INDISTINGUISHABILITY

Let $L \subseteq \Sigma^*$, and Q_L be the set of equivalence classes of the relation I_L on Σ^* .

If Q_L is a finite set, then M_L = $(Q_L, \Sigma, q_0, A_L, \delta)$ is a finite automaton accepting L, where

- $\bullet q_0 = [\Lambda]$
- $\bullet A_L = \{ q \text{ in } Q_L \mid q \cap L \neq \emptyset \}$ and
- • δ : $Q_L \times \Sigma \to Q_L$ is defined by $\delta([x],a) = [xa]$.

Furthermore,

M_L has the fewest states of any FA accepting L.

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

พิสูจน์

INDISTINGUISHABILITY

If Q_L is a finite set, then M_L is finite.

Now, $M_L = (Q_L, \Sigma, q_0, A_L, \delta)$ recognizes the language L.

For any $x \in \Sigma^*$, $x \in L$ if and only if $\delta^*(q_0, x) \in A_L$.

Let $x \in L$. Since $x \in [x]$, we have that $x \in [x] \cap L \neq \emptyset$.

Since $\delta^*(q_0,x) = \delta([\Lambda],x) = [x] \in A_L$.

For $u, v \in \Sigma^*$, $(\delta([u], v) = [uv])$

If $\delta^*(q_0,x) \in A_L$, then $[x] \cap L \neq \emptyset$.

Let y be an element in $[x] \cap L$. We have that $y \in L$.

x and y are indistinguishable (same class), then $x \in L$.

ความสามารถในการแยกความไม่แตกต่างกันได้

ทฤษฎีบท

INDISTINGUISHABILITY

MYHILL-NERODE THEOREM

L is a regular if and only if Q_L is finite.

 Q_L is finite, M_L is also finite. $\delta([x],y) = [xy]$ for any strings x and y in Σ^* .

The partition L_q is finer than the partition I_L .

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

Let L = $\{x \text{ in } \{0, 1\}^* \mid x \text{ ends with } 10 \}$. Consider three strings, Λ , 1 and 10. Ant two of these strings are distinguishable with respect to L.

 $[\Lambda] = \{ \Lambda, 0, 1, 00, 000, 100, 0000, 0100, \dots \}$

 $[1] = \{ 1, 01, 001, 0001, 00001, \dots \}$

 $[10] = \{ 10, 010, 110, 0010, \dots \}.$

ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

Let L = $\{x \text{ in } \{0, 1\}^* \mid x \text{ ends with } 10 \}$. Consider three strings, Λ , 1 and 10. Ant two of these strings are distinguishable with respect to L.

 $M_L = (Q_L, \{0, 1\}, [\Lambda], \{[10]\}, \delta)$ be the FA, and

$$\begin{array}{ll} \delta([\Lambda],\,0) = [\Lambda] & \delta([\Lambda],\,1) = [1] \\ \delta([1],\,0) = [10] & \delta([1],\,1) = [1] \\ \delta([10],\,0) = [\Lambda] & \delta([10],\,1) = [1]. \end{array}$$

REGULAR DECIDABLE

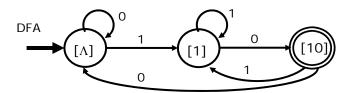
ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

Let L = $\{x \text{ in } \{0, 1\}^* \mid x \text{ ends with } 10 \}$. Consider three strings, Λ , 1 and 10. Ant two of these

strings are distinguishable with respect to L.



โจทย์

น่าคิด

กำหนดให้ ภาษา $0^{n}1^{n}$ เมื่อ $n \ge 0$

 $\{\Lambda, 01, 0011, 000111, ...\}$

จงแสดงให้เห็นว่า

ภาษานี้ไม่เป็นภาษาสม่ำเสมอ

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

 $L = \{ 0^n 1^n \mid n \ge 0 \}$, show that L is not regular.

Consider any strings of the form 0^i and 0^j with $i \neq i$. They are distinguished by the string 1^i .

They are infinitely many strings of the form 0^i and 0^j .

Then there are infinitely many distinguished strings.

โจทย์

น่าคิด

กำหนดให้ ภาษา ww เมื่อ w ∈ Σ *

{ \(\Lambda \), 00, 11, 0000, 0101, \(\lambda \).

จงแสดงให้เห็นว่า

ภาษานี้ไม่เป็นภาษาสม่ำเสมอ

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

ตัวอย่าง

INDISTINGUISHABILITY

 $L = \{ ww \mid w \in \{0, 1\}^* \}$, show that L is not regular.

Consider any strings of the form 0^i and 0^j with $i \neq i$. They are distinguished by the string $1^i0^i1^i$.

They are infinitely many strings of the form 0^i and 0^j .

Then there are infinitely many distinguished strings.

ความสามารถในการแยกความไม่แตกต่างกันได้

MINIMAL FINITE STATE MACHINE

INDISTINGUISHABILITY

Number of equivalence classes

= number of states in $M_{\rm L}$ then $M_{\rm L}$ is a minimal finite state machine.

Find a pair (L_p, L_q) such that L_p and L_q are in the same class, group it into one class.

By contraposition, we will find a pair (L_p, L_q) that they are in difference classes.

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

MINIMAL FINITE STATE MACHINE

INDISTINGUISHABILITY

LEMMA

For p and q in Q, p $\not\equiv$ q, if and only if There exists z in Σ^* so that

exactly one of the two states $\delta^*(p,z)$ and $\delta(q,z)$ is in A.

A pair (p, q) of states for which L_p and L_q are subsets of different equivalence classes, denoted by $p \neq q$.

ความสามารถในการแยกความไม่แตกต่างกันได้

MINIMAL FINITE STATE MACHINE

INDISTINGUISHABILITY

For p and q in Q, $p \neq q$,

if and only if there exists z in Σ^* so that

LEMMA

exactly one of the two states $\delta^*(p,z)$ and $\delta(q,z)$ is in A.

Proof:

Let $p \neq q$. Let x is in L_p and y is in L_q , we have that there exists z in Σ^* , xz and yz are distinguishable,

$$\delta^*(\mathbf{p}, \mathbf{z}) = \delta^*(\delta^*(\mathbf{q}_0, \mathbf{x}), \mathbf{z}) = \delta^*(\mathbf{q}_0, \mathbf{x}\mathbf{z})$$

 $\delta^*(q,z) = \delta^*(\delta^*(q_0,y),z) = \delta^*(q_0,yz)$ only one is in L.

Suppose that only one of $\delta^*(p,z)$ and $\delta(q,z)$ is in A. It means that z distinguishes x in L_p and y in L_q with respect to L. Therefore $p \neq q$.

REGULAR DECIDABLE

ความสามารถในการแยกความไม่แตกต่างกันได้

MINIMAL FINITE STATE MACHINE

INDISTINGUISHABILITY

Consider (p,q) be a distinguishable pair.

Let r and s be two states in Q.

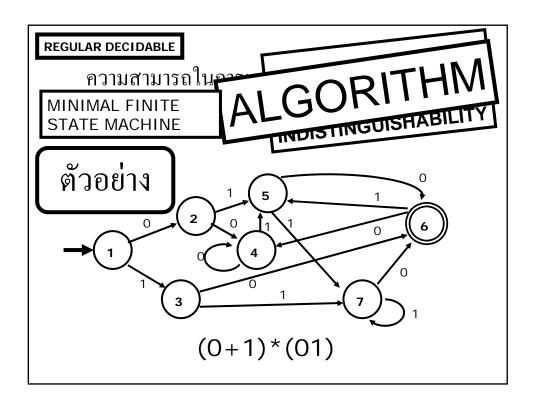
For some a in Σ , such that $\delta(r,a) = p$ and $\delta(s,a) = q$.

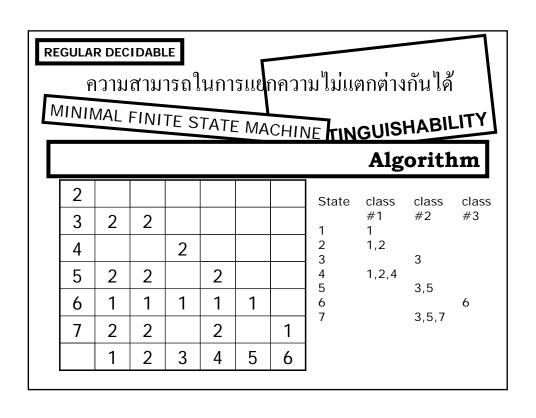
Since

$$\delta^*(r,az) = \delta^*(\delta^*(r,a)) = \delta^*(p,z)$$

$$\delta^*(s,az) = \delta^*(\delta^*(s,a)) = \delta^*(q,z),$$

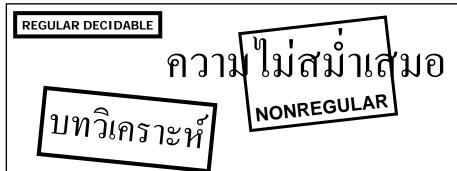
we can conclude that (r,s) is also be a distinguishable pair.





REGULAR DECIDABLE POINTING NONREGULAR

A Language that cannot be defined by a regular expression is called a nonregular language.



Given an infinite regular language L Suppose that there exists a FA with n states associated with L.

For any word x in L such that $|x| \ge n$,

• consider a path associated with x,

 $q_0q_1q_2...q_{n+1}$

■ then, there exists $q_i = q_j$ where $i \neq j$.

