
COMPUTER ALGORITHMS
Athasit Surarerks .

Introduction

EUCLID’s GAME

Two players move in turn. On each
move, a player has to write on the
board a positive integer equal to the
different from two numbers already
in the board; this number must be
new. The player who cannot move
loses the game.

ADDITION’s GAME

Player I and II alternately choose
integers, each choice being one of
the integers 1, 2, …, k, and each
choice being made with knowledge
of all preceding choices. As soon as
the sum of the chosen integers
exceeds N, the last player to choose
loses.

WORLD PUZZLE

Four people want to cross a bridge; they
are all begin in the same side. You must
have 17 minutes to get them all across to
the other side. It is night, and they have one
flashlight. A maximum of two people can
cross the bridge at one time. Any party that
crosses must have the flashlight with them.
Each person walks at a different speed: 1,
2, 5, and 10. A pair must walk together at
the rate of the slower person.

Problem solving

Problem

Transformed
model

Solution

Abstract
model

Problem

Transformed
model

Solution

Abstract
model

Buy 10 pen (5$ each), sell
8$, at least pen have to sell
?

Min β (8β ≥ 50) β = 7

7 pens

Problem solving

Given two complex numbers,
X = a + b j
Y = c + d j

Find an algorithm to perform the product XY.

Cost of a multiplier is 1 USD.
Cost of an adder is 0.01 USD.

(ac-bd) + (ad+bc) j4.02 USD

Complex number

Given two complex numbers,
X = a + b j
Y = c + d j

Find an algorithm to perform the product XY.

Cost of a multiplier is 1 USD.
Cost of an adder is 0.01 USD.

(a+b)(c+d) = ac+ad+bc+bd3.05 USD

Complex number

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Graph coloring

Chromatic number is 2.

Problem solving
Communication

Language translation
Function

Composition function
Algorithms

Rabbits on an island

month

0

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

month

1

By Leonardo di Pisa, 13th century
Rabbits on an island

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

month

2

By Leonardo di Pisa, 13th century
Rabbits on an island

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

month

3

By Leonardo di Pisa, 13th century
Rabbits on an island

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

month

4

By Leonardo di Pisa, 13th century
Rabbits on an island

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

month

5

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Assuming that no rabbits ever die,
how many pairs of rabbits after n months.

Rabbits on an island

Problem size
Traveling salesperson

Minimum spanning tree
String matching
Independent set
Sum of subset
Linear partition

Organization

Introduction
Analysis of algorithm
Design of algorithm

Complexity of algorithm

Organization

Introduction
Problems

Asymptotic notations

Organization

Introduction
Analysis of algorithm

Worst-case analysis
Average-case analysis

Amortized analysis

Organization

Introduction
Analysis of algorithm
Design of algorithm

Divide-and-conquer
Dynamic programming

Approximation algorithm

Organization

Introduction
Analysis of algorithm
Design of algorithm

Complexity of algorithm

ALGOL
statement

sprogram-name(variables listed)
begin statement(s) end
variable ← expression

if condition then statement(s) else statement(s) endif
while condition do statement(s) enddo

for variable ← initial-value step size until final-value do statement(s) enddo
goto label

return variables listed
input variables listed

output variables listed

any other miscellaneous statement

Maximum-Minimum search

001 begin
002 answer ← A[1]
003 for I ← 2 step 1 until n do
004 if A[I] > answer then answer = A[I] endif
005 enddo
006 return answer
007 end

Time used : TA1(n) = t002 + nt003 + (n-1)t004 + t006.

011 max-search (A[1..n])
012 begin
013 if n = 1 then return A[1] endif
014 answer ← max-search(A[1..n-1])
015 if A[n] > answer then return A[n] else return answer endif
016 end

Time used : TA2(n) = TA2(n-1) + t013 + t014 + t015 = nt013 + (n-1)(t014+t015).

Maximum-Minimum search

Efficiency
The efficiency of an algorithm is the
resources used to find an answer. It
is usually measured in terms of the
theoretical computations, such as
comparisons or data moves, the
memory used, the number of
messages passed, the number of
disk accesses, etc.

Most often we shall be interested in
the rate of growth of the time or
space required to solve larger and
larger instances of problem. We
would like to associate with a
problem and integer, called the size
of the problem, which is measure of
the quantity of input data.

Efficiency

The time needed by an algorithm
expressed as a function of the size of a
problem is called the time complexity of
the algorithm. The limiting behavior of
the complexity as size increases is
called the asymptotic time complexity.
Analogous definitions can be made for
space complexity and asymptotic space
complexity.

Efficiency

Complexity
Algorithm Growth rate Time complexity

A1 1000n n

A2 100nlog n n log n

A3 10n2 n2

A4 n3 n3

A5 2n 2n

Growth rate

2n
n2

log n

n

Growth rate
Let f and g be two functions, and if

f(n) < g(n)

if and only if,
limn→∞ f(n)/g(n) = 0.

Exercises
Compare the growth rate of

0.5n

1
log10 n
n
10n

0.5n < 1 < log n < n < 10n

Exercises
Compare the growth rate of

ln9 n and n0.1,
n100 and 2n.

L’hÔpital’s rules
Let f and g be two functions, and if

limn→∞ f(n) = ∞,
limn→∞ g(n) = ∞

Then limn→∞ f(n)/g(n) = limn→∞ f(n)’/g(n)’.

Asymptotic
notations

It is the asymptotic complexity of an
algorithm which ultimately determines
the size of problems that can be
solved by the algorithm.

ω
A theoretical measure of the execution of an
algorithm, usually the time or memory needed, given
the problem size n, which is usually the number of
items. Informally, saying some equation f(n) = (g(n))
means g(n) becomes insignificant relative to f(n) as n
goes to infinity. More formally, it means that for any
positive constant c, there exists a constant k, such that
0 ≤ cg(n) < f(n) for all n ≥ k. The value of k must not
depend on n, but may depend on c. That is

ω(g(n)) = {f(n) | limn→∞(f(n)/g(n))=∞ }.

Θ
A theoretical measure of the execution of an
algorithm, usually the time or memory needed, given
the problem size n, which is usually the number of
items. Informally, saying some equation f(n) = Θ(g(n))
means it is within a constant multiple of g(n). More
formally, it means there are positive constants c1, c2, and k, such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

for all n ≥ k. The values of c1, c2, and k must be fixed
for the function f and must not depend on n.

Θ(g(n)) = {f(n) | limn→∞(f(n)/g(n))=c,c≠0,c≠∞}.

Big-O
A theoretical measure of the execution of an
algorithm, usually the time or memory needed, given
the problem size n, which is usually the number of
items. Informally, saying some equation f(n) = O(g(n))
means it is less than some constant multiple of g(n).
More formally it means there are positive constants c
and k, such that 0 ≤ f(n) ≤ cg(n)

for all n≥ k. The values of c and k must be fixed for the
function f and must not depend on n.

O(g(n)) = {f(n) | limn→∞(f(n)/g(n))=c,c≠∞}.

O(g(n)) = o(g(n))∪Θ(g(n)).

Big-O
The importance of this measure can be seen in
trying to decide whether an algorithm is adequate,
but may just need a better implementation, or the
algorithm will always be too slow on a big enough
input. For instance, quicksort, which is O(n log n)
on average, running on a small desktop computer
can beat bubble sort, which is O(n2), running on a
supercomputer if there are a lot of numbers to sort.
To sort 1,000,000 numbers, the quicksort takes
6,000,000 steps on average, while the bubble sort
takes 1,000,000,000,000 steps!

Ω
A theoretical measure of the execution of an
algorithm, usually the time or memory needed, given
the problem size n, which is usually the number of
items. Informally, saying some equation f(n) = Ω(g(n))
means it is more than some constant multiple of g(n).
More formally, it means there are positive constants c
and k, such that 0 ≤ cg(n) ≤ f(n)

for all n ≥ k. The values of c and k must be fixed for the
function f and must not depend on n.

Ω(g(n)) = ω(g(n))∪Θ(g(n)).

Some properties
Asymptotic Transitivity Reflexivity Symmetry

Little-o Yes No No

ω Yes No No

Θ Yes Yes Yes

Big-O Yes Yes No

Ω Yes Yes No

Some properties
Asymptotic Transitivity Reflexivity Symmetry

Little-o Yes No No

ω Yes No No

Θ Yes Yes Yes

Big-O Yes Yes No

Ω Yes Yes No

Transpose
Symmetry

f(n) = O(g(n)) if and only if g(n) = Ω(f(n))
f(n) = o(g(n)) if and only if g(n) = ω(f(n)).

Asymptotic Notations

c1g(x)

c2g(x)

f(x)
f(x) = Ω(g(x))
For all x ≥ k2,

f(x) ≥ c1g(x).

f(x) = O(g(x))
For all x ≥ k1,

f(x) ≤ c2g(x).

f(x) = Θ(g(x))
For all x ≥ k1, k2,

c1g(x) ≤ f(x) ≤ c2g(x).

k1 k2

SPECIAL ORDERS OF GROWTH

constant : Θ(1)
logarithmic : Θ(log n)
polylogarithmic : Θ(logc n) , c ≥ 1
sublinear : Θ(na) , 0 < a < 1
linear : Θ(n)
quadratic : Θ(n2)
polynomial : Θ(nc) , c ≥ 1
exponential : Θ(cn) , c > 1

Asymptotic Notations

Exercises
Show that

log n! = Θ(n log n),
loga n = Θ(logb n).

Analysis of algorithm

A detail unambiguous sequence of actions to
perform to accomplish some task. Named
after a Persian mathematician Abu Ja'far
Mohammed ibn Mûsâ Al-Khawarizmi who
wrote a book with arithmetic rules dating from
about 825 A.D.

Al-Khawarizmi

CRITERIAs
Correctness

Amount of work done
Amount of space used

Simplicity
Optimality

Maximum-Minimum search

001 begin
002 answer ← A[1]
003 for I ← 2 step 1 until n do
004 if A[I] > answer then answer = A[I] endif
005 enddo
006 return answer
007 end

Time used : TA1(n) = t002 + nt003 + (n-1)t004 + t006.

TA1(n) = Θ(t002) + nΘ(t003) + (n-1) Θ (t004) + Θ(t006)
TA1(n) = Θ (n)

011 max-search (A[1..n])
012 begin
013 if n = 1 then return A[1] endif
014 answer ← max-search(A[1..n-1])
015 if A[n] > answer then return A[n] else return answer endif
016 end

Time used : TA2(n) = TA2(n-1) + t013 + t014 + t015 = nt013 + (n-1)(t014+t015).

Maximum-Minimum search

TA2(n) = nΘ(t013) + (n-1)(Θ(t014)+Θ(t015))
TA2(n) = Θ(n)

RUNNING TIME
ANALYSIS

To simplify running time analysis,
Count only “barometer” instructions
Use asymptotic analysis

Basic instruction
To analyze total time used of an algorithm, we usually translate

each operation into basic operation such that it has a constant

time complexity, Θ(1).
Example: Which statements are basic?

STATEMENT Y/N
if a < b then a ← a+1 else a ← a-1 endif. YES
if b < c then e ← c! endif NO
d ← cn NO
goto 005 YES
call max(A[1..n]) NO
return ← subroutine(A,B) NO

Sorting Algorithm
001 sort(A[1..n])
002 begin
003 for last ← n step –1 until 2 do
004 for i ← 2 step 1 until last do
005 if A[i] < A[i-1] thenbuffer ← A[i]

A[i] ← A[i-1]
A[i-1] ← buffer endif

006 enddo
007 enddo
008 end Operation Times Complexity

003 n Θ(n)

004 ∑2≤last≤n last Θ(n(n+1)/2 - 1)

005 ∑2≤last≤n last-1 Θ(n(n-1)/2)

Total Θ(n2)

Sequencing
Give two operations, S1 and S2, such that S2
will be processed after S1 sequentially. Total
time complexity depends on the complexity of
each operation.

Upper bound of S1S2 = max(upper bound S1, upper bound S2)
Lower bound of S1S2 = max(lower bound S1, lower bound S2)

S1
Time

low/up
S2

Time
low/up

Time
low/up

S1S2

Θ(n) Θ(n)

Θ(n) O(n2)

Θ(n2) Θ(n)

Θ(n) O(n)

Sequencing

S1
Time

low/up
S2

Time
low/up

Time
low/up

S1S2

Θ(n)
Ω(n)
O(n)

Θ(n)
Ω(n)
O(n)

Ω(n)
O(n)

Ω(n)
O(n)

Θ(n)
Ω(n)
O(n)

O(n2)
unknown

O(n2)
Ω(n)
O(n2)

O(n2)

Θ(n2)
Ω(n2)
O(n2)

Θ(n)
Ω(n)
O(n)

Ω(n2)
O(n2)

Θ(n2)

Θ(n)

Θ(n)
Ω(n)
O(n)

O(n)
unknown

O(n)
Θ(n)

Sequencing

Given three commands, S1, S2 and S3.
Let t1, t2 and t3 be time complexity of S1, S2 and S3
respectively.
Consider a statement

if S1 then S2 else S3 endif
Let T be time complexity of this statement, we have that:

Lower bound of T = t1 + min(t2,t3)
Upper bound of T = t1 + max(t2,t3)

If statement

Example:
Find the time complexity of if S1 then S2 else S3 endif
if t1 = Θ(2n), t2 = O(n) and t3 = O(n log n).

Upper bound of T = Ω(2n) + min(unknown, unknown)
= Ω(2n).

Lower bound of T = O(2n) + max(O(n), O(n log n))
= O(2n) + O(n log n)
= O(2n).

Time complexity is Θ(2n).

If statement

Exercise
Find the time complexity of

if Θ(n log n) then O(n2) else Θ(log n) endif

O(n2)

if O(n3) then O(n log n) else Θ(2n) endif

O(2n)

if O(n!) then Θ(n2) else Θ(n) endif

O(n!)

if Θ(n) then O(n log n) else Θ(n log n) endif

O(n log n)

If statement

Time complexity can be computed by
summary of time of each loop.
Let ti be time used in the ith iteration. Then
total time used is equal to

Σall i ti.

For-loop Statement

Example: Find time complexity of

001 for last ← n step –1 until 2 do
002 for i ← 2 step 1 until last do
003 if A[i] < A[i-1] then swap(A[i],A[i-1]) endif
004 enddo
005 enddo

Time complexity = Σ2≤last≤n Σ2≤i≤last+1 Θ(1)
= Σ2≤last≤nΘ(last)
= Θ(Σ2≤last≤n last)
= Θ(n(n+1)/2 –1)
= Θ(n2).

For-loop Statement

Example: Find time complexity of

001 for i ← 1 step 1 until m do
002 for j ← m step –1 until 1 do
003 for k ← 1 step 1 until j do
004 sum ← sum + i + j + k
005 enddo
006 enddo
007 enddo

Time complexity = Σ1≤i≤m (Σ1≤j≤m (Σ1≤k≤j (Θ(1)))
= Σ1≤i≤m (Σ1≤j≤mΘ(Σ1≤k≤j k))
= Σ1≤i≤m (Σ1≤j≤mΘ(j))
= Σ1≤i≤m (Θ(m2))
= Θ(m3)

For-loop Statement

While-loop Statement
By the same way, we have to count the number of
iterations.

Example: Find the time complexity of
001 while (n > 0) do
002 n ← ⎣n/2⎦
003 enddo

Consider the value of n in each loop. For the i-th
iteration, the value of n is equal to n/2i. Since the number
of iterations is equal to log2 n,

time complexity = Θ(log2 n).

Example: Fine the complexity of

001 for i ← 1 step 1 until n-1 do
002 j ← i.
003 while j > 0 and A[j] < A[j-1] do
004 sum ← sum + A[j]
005 j ← j - 1
006 enddo
007 enddo

Time complexity = Θ(n) + Σ1≤i≤n-1 (O(Σ1≤j≤i 1)) = O(n2).

While-loop Statement

Definition: An algorithm to compute the greatest common
divisor of two integers. It is Euclid(a,b){if (b=0) then
return a; else return Euclid(b, a mod b);}.

Algorithm Euclid’s GCD

001 GCD(a,b)
002 begin
003 while (a > o) do
004 q ← a
005 a ← b mod a
006 b ← q
007 enddo
008 return b
009 end

b > a

While-loop Statement

Recursive calls

It is important to see that the size of problem
should be decreased for each iteration of
recursive called. We can count all instructions
by

1.Set run time complexity = T(n) where n is the size of
problem.
2.Time complexity of recursive call statement = T(m) where
m is the input size and m < n.
3.Let T(n) = T(m) + time complexity of other instructions.
4.Find T(n) in term of asymptotic complexity function.

Algorithm Selection Sort

001 SelectionSort(A{1..n])
002 begin
003 if (n ≤ 1) then return endif
004 maxindex ← Max(A[1..n])
005 buffer ← A[n]
006 A[n] ← A[maxindex]
007 A[maxindex] ← buffer
008 SelectionSort(A[1..n-1])
009 end

Time complexity T(n) = T(n-1) + Θ(n)
= T(n-2) + Θ(n-1) + Θ(n)
= ...
= Σ1≤i≤n Θ(i) =Θ(n2).

Recursive calls

Algorithm Binary Search

001 BinarySearch(A[1..n],x)
002 begin
003 if (A[1] > A[n]) then return –1 endif
004 mid ← (A[1] + A[n])/2
005 if (x = A[mid]) then return mid endif
006 if (x < A[mid]) then return BinarySearch(A[1..mid-1],x)
007 else return BinarySearch(A[mid+1..n],x) endif
008 end

Time complexity T(n) ≤ T(n/2) + Θ(1)
≤ T(n/22) + Θ(1) + Θ(1)
≤ T(n/2k) + Σ1≤i≤k Θ(i)
≤ Θ(1) + Σ1≤i≤log n Θ(1)
≤ Θ(log2 n)
= O(log2 n).

Recursive calls

The recursive call in a given algorithm can be represented by
using recursive tree. For example, the run time complexity of
a given algorithm is

T(n) = 2T(n/2) + Θ(n), for any n>1 and T(1) = Θ(1).

Θ(n)

Θ(n/2) Θ(n/2)

Θ(n/4)
Θ(n/4) Θ(n/4)

Θ(n/4)

Θ(1) Θ(1)…

Θ(n)

2Θ(n/2)

4Θ(n/4)

(2lg n) Θ(n/2lg n)

log2 n
Θ(n log n)

Recursive calls

T(n) = T(n/2) + T(n/3), for any n>1 and T(1) = Θ(1).

T(n)

T(n/2) T(n/3)

T(n/4) T(n/6) T(n/6)
T(n/9)

T(1) T(1)…

Θ(1)

2Θ(1)

4Θ(1)

(2log n) Θ(1)

lg n

Θ(n)

∑0≤i≤log n 2i

+

+

+
+

…

Recursive calls

T(n) = T(n/a) + T(n/b), for any n>1 and T(1) = Θ(1).

T(n)

T(n/a) T(n/b)

T(n/a2) T(n/ab) T(n/ab)
T(n/b2)

T(1) T(1)…

Θ(1)

2Θ(1)

4Θ(1)

(2log n) Θ(1)

log n

∑0≤i≤log n 2i

+

+

+
+

…

a>1 and b>1

Recursive calls

T(n) = T(n/a) + T(n/b) + Θ(n), for any n>1
and T(1) = Θ(1).

T(n)

T(n/a) T(n/b)

T(n/a2) T(n/ab) T(n/ab)
T(n/b2)

T(1) T(1)…

Θ(1)

2Θ(1)

4Θ(1)

(2log n) Θ(1)

log n

∑0≤i≤log n 2i

+

+

+
+

…

Recursive calls

a>1 and b>1

T(n) = T(n/a) + T(n/b) + Θ(n), for any n>1
and T(1) = Θ(1).

Θ(n)

Θ(n/a) Θ(n/b)

Θ(n/a2) Θ(n/ab) Θ(n/ab)
Θ(n/b2)

Θ(1) Θ(1)…

Θ(1)

2Θ(1)

4Θ(1)

(2log n) Θ(1)

log n

∑0≤i≤log n 2i

+

+

+
+

…

Recursive calls

a>1 and b>1

T(n) = T(n/a) + T(n/b) + Θ(n), for any n>1
and T(1) = Θ(1).

Θ(n)

Θ(n/a) Θ(n/b)

Θ(n/a2) Θ(n/ab) Θ(n/ab)
Θ(n/b2)

Θ(1) Θ(1)…

Θ(n)

Θ((n/a)+(n/b))

Θ(((1/a)+(1/b))2n)

log n

∑0≤i≤log n ((1/a)+(1/b))in

+

+

+
+

…

Θ(((1/a)+(1/b))log nn)Θ(n)

Recursive calls

a>1 and b>1

Master method
T(n) = aT(n/b) + f(n) where a ≥ 1 and b ≥ 1

f(n)

f(n/b) f(n/b)

f(n/Ib2) f(n/b2) f(n/b2)
f(n/b2)

f(1) f(1)

…a

…a …a

f(n)

af(n/b)

a2f(n/b2)

alg nf(n/blg n)…

lg n

∑1≤i≤lg n ai f(n/bi)

T(n) = aT(n/b) + f(n) where a ≥ 1 and b ≥ 1
This complexity depends on three variables, a, b and f(n).

f(n) T(n)
O(n(logb a)-ε), for fixed ε > 0 O(n(logb a))

This means that the growth rate of f(n) is less than
O(n(logb a)). Then total time complexity is O(n(logb a)).

Master method

T(n) = aT(n/b) + f(n) where a ≥ 1 and b ≥ 1
This complexity depends on three variables, a, b and f(n).

f(n) T(n)
O(n(logb a)-ε), for fixed ε > 0 O(n(logb a))

Θ(n(logb a)) Θ(n(logb a) log n)

It is clear that total time complexity is equal to
Θ(n(logb a) log n).

Master method

T(n) = aT(n/b) + f(n) where a ≥ 1 and b ≥ 1
This complexity depends on three variables, a, b and f(n).

f(n) T(n)
O(n(logb a)-ε), for fixed ε > 0 O(n(logb a))

Θ(n(logb a)) Θ(n(logb a) log n)

Ω(n(logb a)+ε), for fixed ε > 0
and

af(n/b) ≤ cf(n)
for c < 1 and n > n0

Θ(f(n))

This means that the growth rate of f(n) is more than
Ω(n(logb a)), and the condition af(n/b) ≤ cf(n) for c < 1 and
n > n0 means that the growth rate of f(n) decreases
where n increases. Then total growth rate is Θ(f(n)).

Master method

Example: Find the solution of
T(n) = 16T(n/4) + n
T(n) = 27T(n/3) + n3

T(n) = 3T(n/4) + n log n.

T(n) = 16T(n/4) + n
Since log416 – 0.1 > 1,
we can conclude that time complexity = O(n2).

Master method

Example: Find the solution of
T(n) = 16T(n/4) + n
T(n) = 27T(n/3) + n3

T(n) = 3T(n/4) + n log n.

T(n) = 27T(n/3) + n3

Since log3 27 = 3, it is clear that
time complexity = Θ(n3log n).

Master method

Example: Find the solution of
T(n) = 16T(n/4) + n
T(n) = 27T(n/3) + n3

T(n) = 3T(n/4) + n log n.

T(n) = 3T(n/4) + n log n.
Since log4 3 < 0.8, and f(n) = n log n = Ω(n0.8+0.2).
We also have that 3f(n/4) ≤ (3n/4)log n.
Then time complexity = Θ(n log n).

Master method

Amortized analysis

Three methods
Aggregate method
Accounting method
Potential method

	COMPUTER ALGORITHMS
	Introduction
	Problem solving
	Problem solving
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Graph coloring
	Problem solving
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Problem size
	Organization
	Organization
	Organization
	Organization
	Organization
	ALGOL �statements
	Maximum-Minimum search
	Maximum-Minimum search
	Efficiency
	Efficiency
	Efficiency
	Complexity
	Growth rate
	Growth rate
	Exercises
	Exercises
	L’hÔpital’s rules
	Asymptotic notations
	
	
	Big-O
	Big-O
	
	Some properties
	Some properties
	Transpose Symmetry
	Asymptotic Notations
	Asymptotic Notations
	Exercises
	Analysis of algorithm
	CRITERIAs
	Maximum-Minimum search
	Maximum-Minimum search
	RUNNING TIME ANALYSIS
	Basic instruction
	Sorting Algorithm
	Sequencing
	Sequencing
	Sequencing
	Amortized analysis
	Three methods

