
DIVIDE & CONQUER
Athasit Surarerks .

Divide & conquer

Introduction
Divide and conquer is a technique
for designing of algorithms by divide
a problem (large size) into many
small problems that is easier to be
solved. The whole solution can be
obtained by combining all solutions
of small problems.

Template
001 Solve(I)
002 begin
003 n ← size(I)
004 if (n ≤ smallsize) then solution ← DirectSolve(I)
005 else divide I into I1 I2 … Ik
006 for j ← 1 step 1 until k do
007 solution(Ij) ← Solve (Ij)
008 enddo
009 solution ← combine(all solution(I))
010 endif
011 return ← solution
012 end

Complexity
Let k be the number of smaller instances

into which the input divided,
where nj is the size of the instance j,

D(n) be run time used by divide,
C(n) be run time used by combine.

The general form of the recurrence equation that
describes the amount of work done by the algorithm is

T(n) = D(n) + ∑0≤j≤k T(nj) + C(n), for n > smallsize.

It is clear that for any n ≤ smallsize, time used T(n) is the

time used by DirectSolve.

Binary search
An algorithm to search a sorted array. It
begins with an interval covering the whole
array. If the search value is less than the
item in the middle of the interval, narrow
the interval to the lower half. Otherwise
narrow it to the upper half. Repeatedly
check until the value is found or the
interval is empty.

Binary search
Algorithm BinarySearch
Input: Array A[1..n] with n elements

k is the search key
Output: The index j such that A[j] = k
001 BinarySearch(A[1..n],k)
002 begin
003 if (n < 1) then return -1
004 else
005 split ← (n+1)/2
006 if (k = A[split]) then return split
007 else if (k < A[split]) then return BinarySearch(A[1..split-
008 else return BinarySearch(A[split+1..n],k) endif
009 endif
010 end

Binary search
Worst-Case Analysis of Binary Search

Let us define the problem size of BinarySearch as n,
the number of entries in the range of Array A to be
searched. How many times can we divide n by two
without getting a result less than one? In other words,
what is the largest d for which n/2d≥1? We solve for d:
2d≤n and d≤lg(n). Therefore we can do ⎣lg(n)⎦
comparisons following recursive calls, and one
comparison before any recursive calls, for at most
⎣lg(n)⎦+1 comparisons in all. Thus the running time is
Θ(log n).

MergeSort
Given two sequences A and B sorted in
nondecreasing order, merge them to create
one sorted sequence C. Merging sorted
subsequences is essential to the strategy
of Mergesort.

MergeSort
Given two sequences A and B sorted in
nondecreasing order, merge them to create
one sorted sequence C. Merging sorted
subsequences is essential to the strategy
of Mergesort.

MergeSort
Given two sequences A and B sorted in
nondecreasing order, merge them to create
one sorted sequence C. Merging sorted
subsequences is essential to the strategy
of Mergesort.

MergeSort
Merging sorted sequences (times)

Whenever a comparison of keys from A and B is
done, at least one element is moved to C and
never examined again. After the last comparison,
at least two elements have not yet been moved to
C. The greater one is moved immediately, but now
C has at most n-1 elements, and no more
comparisons will be done. Those that remain in
the other array are moved to C without any further
comparisons. So at most n-1 comparisons are
done. The worst case, using all n-1 comparisons,
occurs when A[1] and B[1] belong in the first two
positions in C.

MergeSort
Merging sorted sequences (space)

It might appear from the way in which Merge
algorithm is written that merging sequences with a
total of n entries requires enough memory
locations for 2n entries, since all entries are copied
to C. In some cases, however, the amount of extra
space needed can be decreased. One case is that
the sequences are linked lists, and A and B are
not needed (as lists) after the merge is completed.
Then the list nodes of A and B can be recycled as
C in created.

MergeSort
Algorithm MergeSort

Input: Array A[1..n] with n elements

Output: Array A[1..n] with n elements and for 2≤j ≤ n, A[j-1] ≤ A[j].
001 Mergesort(A[1..n])

002 begin

003 if (1 < n) then

004 miditem ← ⎣ (1+n)/2⎦

005 Mergesort(A[1..miditem])

006 Mergesort(A[miditem+1..n])

007 Merge(A[1..miditem],A[miditem+1..n],A[1..n])

008 endif

009 end

MergeSort
Mergesort analysis

First, we find the asymptotic order of the worst-
case number of key comparisons for Mergesort.
As usual, we define the problem size as n, the
number of elements in the range to be sorted. The
recurrence equation for the worst-case behavior of
Mergesort is

t(n) = t(⎣n/2⎦) + t(⎡n/2⎤) + n – 1,
and t(1) = 0.
The master method tells us immediately that t(n) =
Θ(n log n). So we finally have a sorting algorithm
whose worst-case behavior is in Θ(n log n).

Quicksort
An in-place sort algorithm that uses the
divide-and-conquer paradigm. It picks an
element from the array (the pivot),
partitions the remaining elements into
those greater than and less than this
pivot, and recursively sorts the
partitions. There are many variants of
the basic scheme above: to select the
pivot, to partition the array, to stop the
recursion on small partitions, etc.

Quicksort

Quicksort

PARITITON

PIVOT

Quicksort

QUICKSORT QUICKSORT

Quicksort
Algorithm Quicksort
Input: Array A[1..n] with n elements
Output: Array A[1..n] with n elements and for 2≤j≤n, A[j-1] ≤ A[j].

001 Quicksort(A[1..n])
002 begin
003 splitpoint ← Partition(A[1..n])
004 if (splitpoint ≠ first) then
005 Quicksort(A[first..splitpoint])
006 endif
007 if (splitpoint ≠ last) then
008 Quicksort(A[splitpoint+1..last])
009 endif
010 end

Quicksort
PARTITION: Pivot = 5.

5 4 7 1 8 9 3 11 2 12

2 4 7 1 8 9 3 11 5 12

2 4 7 1 8 9 3 11 5 12

2 4 3 1 8 9 7 11 5 12

2 4 3 1 8 9 7 11 5 12

Quicksort
Worst case: Partition compares each key to pivot, so
if there are n positions in the range of the array it is
working on, it does n-1 key comparisons. If pivot is the
smallest key, and all that has been accomplished is
splitting the range into an one element subrange and
a subrange with n-1 elements. Thus, if pivot is the
smallest key each time Partition is called, then the
total number of key comparisons done is

∑1≤j≤n (j-1) = n(n-1)/2

and time used = Θ(n2).

Quicksort
Average Behavior: We assume that the keys are
distinct and that all permutations of the keys are
equally likely. Let k be the number of elements in the
left subrange (then n-k be the number of elements in
the another subrange). It means that pivot is the
(k+1)th element of the array (after sorted). Each
possible position for the split point k is equally likely
(has probability 1/k) so, letting k=n and t(n) be the
number of comparisons done for range of this size, we
have the recurrence equation

t(n) = (1/n)(∑1≤k≤n-1 (t(k) + t(n-k)) + t(1) + t(n-1)) + Θ(n).
= (1/n)(∑1≤k≤n-1 t(k) + ∑1≤k≤n-1t(n-k)) + Θ(n).
= (2/n)(∑1≤k≤n-1 t(k)) + Θ(n).

t(n) = O(n log n)

Selection problem
Suppose that A is an array containing n
elements with keys from some linearly
ordered set, and let k be an integer such
that 1≤k≤n. The selection problem is the
problem of finding an element with the kth

smallest key in A. Such an element is said
to have rank k.

Selection problem
A Divide-and-Conquer Approach

Suppose we can partition the keys into two
sets, S1 and S2, such that all keys in S1 are
smaller than all keys in S2. Then we know
that the kth element is in S1 or S2, and we
can ignore the other set and restrict our
search to the larger set.

Selection problem
Example: Partitioning in search of the median

Suppose n=255 be size of the problem. We are
seeking the median element (whose rank
k=128). Suppose after partitioning, that S1 has
96 elements and S2 has 159 elements. Then the
median of the whole set is in S2, and it is the
32nd-smallest element in S2. Thus the problem
reduces to finding the element of rank 32 in S2,
which has 159 elements.

Quick selection
Algorithm QuickSelect
Input: Array A[1..n] with n elements

k is an integer such that 1≤k≤n
Output: The kth smallest element of A
001 QuickSelect(A[1..n],k)
002 begin
003 if (n = 1) then return A[1]
004 else
005 split ← RandomizedPartition(A[1..n])
006 if (k ≤ split) then return QuickSelect(A[1..split],k)
007 else return QuickSelect(A[split+1..n],k-split)
008 endif
009 end

Quick selection
Let t(n) be time used for QuickSelect of n elements, then

t(n) ≤ t(max(k,n-k)) + Θ(n)
≤ (1/n) (∑1≤k≤n t(max(k,n-k)) + Θ(n)
= (1/n) (t(n-1) + ∑1≤k≤n-1 t(max(k,n-k)) + Θ(n)
= (2/n) (∑⎡n/2⎤≤k≤n-1 t(k)) + Θ(n)
= O(n).

Note: In the worst case, t(n) = Θ(n2).

MM5

mm5
≤ mm5

≥ mm5

∼30%

∼30%

MM5

T(n) ≤ T(0.7n) + Θ(n) + Θ(n) + T(n/5) + Θ(n)
= T(0.7n) + T(0.2n) + Θ(n)
≤ Θ(n)

Smaller problem partition

medians

selection

removed

MM5

T(n) ≤ T(0.7n) + Θ(n) + Θ(n) + T(n/5) + Θ(n)
= T(0.7n) + T(0.2n) + Θ(n)
≤ Θ(n)

Modular
Find the value of

ak mod n
using divide & conquer technique.

Fact:
ak mod n = (ak/2 mod n)2 mod n : k=even
ak mod n = a(a⎣k/2⎦ mod n)2 mod n : k=odd

Modular
2370 mod 371 =(2185 mod 371)2 mod 371

2185 mod 371 =2(292 mod 371)2 mod 371

292 mod 371 =(246 mod 371)2 mod 371

246 mod 371 =(223 mod 371)2 mod 371

223 mod 371 =2(211 mod 371)2 mod 371

211 mod 371 =2(25 mod 371)2 mod 37132

298

135

46

151170

193

Matrix Multiplication

n×n matrix
A

n×n matrix
B×

A1,1

A2,1

A1,2

A2,2

B1,1

B2,1

B1,2

B2,2

A1,1 B1,1 + A1,2 B2,1 A1,1 B1,2 + A1,2 B2,2

A2,1 B1,1 + A2,2 B2,1 A2,1 B1,2 + A2,2 B2,2

T(n) = 8T(n/2) + Θ(n2)

Matrix Multiplication
STRASSEN 1968

M1 = (A12-A22)(B21+B22)

M2 = (A11+A22)(B11+B22)
M3 = (A11-A21)(B11+B12)

M4 = (A11-A12)B22

M5 = A11(B12-B22)

M6 = A22(B21-B11)

M7 = (A21+A22)B11

C11 = M1+M2-M4+M6

C12 = M4+M5

C21 = M8+M7

C22 = M2-M3+M5-M7

C11 C12

C21 C22

T(n) = 7T(n/2) + Θ(n2)= O(n2.81)

SuperStar
Find a superstar in the party

Superstar
1. All people know the superstar.
2. The superstar knows nobody.

Exercises

Draw an algorithm for finding the kth element
in the list using MM5.

Draw an algorithm for computing the
multiplication of two n-square matrices.

Draw an algorithm for finding the superstar.

4040

40

Exercises
Using a divide and conquer technique to find
the value of

4040

40

40
a b x=(a+b)/2 x2-n
0 40 20 360
0 20 10 60
0 10 5 -15
5 10 7.5 16.25
5 7.5 6.25 -0.9375

6.25 7.5 6.875 7.265625
6.25 6.875 6.5625 3.066406
6.25 6.5625 6.40625 1.040039

Exercises
Given a set of real numbers { a1, a2, a3,…,an}.
Is there a pair of ai and aj satisfying

ai + aj = k
for a fixed number k ?

Find an algorithm with O(n log n) to answer this
question.

4040

40

Exercises

Given a set of numbers { a1, a2, a3,…,an}.

Find an algorithm with O(n log n) to find a
mode element in this set.
(In the case that there are more than one mode, only
one mode is chosen to be the answer.)

4040

40

Exercises
Given a sorted list a1 a2 a3 … an.

Suppose that the list is rotated by an
unknown k,

i.e., an-k+1 an-k+2 … an a1 a2 … an-k

Find an algorithm with O(log n) for finding the
maximum number in the list.

4040

40

	DIVIDE & CONQUER
	Divide & conquer
	Binary search
	Binary search
	Binary search
	MergeSort
	MergeSort
	MergeSort
	MergeSort
	MergeSort
	MergeSort
	MergeSort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Selection problem
	Selection problem
	Selection problem
	Quick selection
	Quick selection
	MM5
	MM5
	MM5
	Modular
	Modular
	Matrix Multiplication
	Matrix Multiplication
	SuperStar
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises

