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Introduction
Dynamic Programming is a general algorithm 
design paradigm.
Dynamic Programming is a technique for 
solving problems “bottom-up”:
first, solve small problems, and then use the 
solutions to solve larger problems.
What kind of problems can Dynamic 
Programming solve efficiently?
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Introduction
Optimal substructure: The optimal solution 
contains optimal solutions to sub-problems.
Overlapping sub-problems: the number of 
different sub-problems is small, and a 
recursive algorithm might solve the same 
sub-problem a few times. 
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Optimization 
problems

Optimization problem is an important and 
practical class of computational problems. 
For most of these, the best known algorithm 
runs in exponential time. 
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Rabbits on an 
island

month

0

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.
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month

1

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an 
island
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month

2

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an 
island
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month

3

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an 
island



9

month

4

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an 
island
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month

5

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Assuming that no rabbits ever die,
how many pairs of rabbits after n months.

Rabbits on an 
island
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By Leonardo di Pisa, 13th century

Rabbits on an 
island

Fibonacci Number
F0 = 1
F1 = 1
F2 = F0 + F1 = 2
F3 = F1 + F2 = 3
F4 = F2 + F3 = 5
…
Fn = Fn-2 + Fn-1

1

Exponential time → Linear time

OVERLAPPING SUBPROBLEMS
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0/1 Knapsack 
problem

Choose items with maximum total 
benefit but with some limitation.

weight
value

4 kgs 2 kgs 2 kgs 6 kgs 2 kgs

B200 B30 B60 B250 B800

Max 9 kgs

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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0/1 Knapsack 
problem

B800

B1050

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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0/1 Knapsack 
problem

same solution

OVERLAPPING

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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0/1 Knapsack 
problem

Choose items with maximum total 
benefit but with some limitation.

weight
value

4 kgs 2 kgs 2 kgs 6 kgs 2 kgs

B200 B30 B60 B250 B800

Max 9 kgs

Number of solutions : 2n (n : number of books)

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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0/1 Knapsack 
problem

Choose items with maximum total 
benefit but with some limitation.

weight
value

4 kgs 2 kgs 2 kgs 6 kgs 2 kgs

B200 B30 B60 B250 B800

Max 9 kgs

OBJECTIVE FUNCTION: 
otherwise
selected
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http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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Linear Partition

Partition all fields into 3 groups with approximately 
the same size.

X1 X2 X3 X4 X5 X6 X7 X8

P2P1 P3

OBJECTIVE FUNCTION: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

t

si
ij xPmaxmin

NUMBER OF SOLUTIONS C(n+k-1,k-1)
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Printing neatly
Application for word processor
Problem: English text with n words

word i with length wi (no.of.chars)
Each line contains max M chars

Solution: Close to right justified text

Penalty: sum of right blank-end square.

( ) ⎥
⎦

⎤
⎢
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⎡
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+=
−

−

i

i

x

xk
kiii wxxMS

1
1

1

)1( blank-end of line i

),...,,,( 321 mxxxx xj : last wordth of line j.

Objective function
⎟
⎠

⎞
⎜
⎝

⎛∑
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m

k
kS

1

2min
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

Cost of ((AB)C)D) is 1000+100+50 = 1150

Cost of ((AB)(CD) is 1000+200+1000 = 2200
Cost of (A(B(CD))) is 200+2000+500 = 2700HOW MANY SOLUTIONS ?
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

Number of solutions = number of sequence of multiplication
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

ABCD

A BCD AB CD ABC D

B CD BC D A BC AB CA B

C D A B

C D

B C B C200

200

200 200 1000

10002200 300 250 1100

800 2200 300
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

ABCD

A BCD AB CD ABC D

B CD BC D A BC AB CA B

C D A B

C D

B C B C200

200

200 1000

10002200 300 1100

800 2200

(A(BC)D)
300
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

( )jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

( )jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

( )jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n
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Sequence of matrix 
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

( )jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n
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Optimal binary 
search tree

DATA Probability

A 0.25
B 0.22
C 0.20
D 0.18
E 0.08
F 0.05
G 0.02

Create an optimal binary search tree
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Optimal binary 
search tree

Create an optimal binary search tree

D

B F

A C E G

DATA Probability

A 0.25
B 0.22
C 0.20
D 0.18
E 0.08
F 0.05
G 0.02

TIME

3
2
3
1
3
2
3

Average-time for searching 2.37
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Optimal binary 
search tree

Create an optimal binary search tree

B

A D

E G

C F

DATA Probability

A 0.25
B 0.22
C 0.20
D 0.18
E 0.08
F 0.05
G 0.02

TIME

2
1
3
2
4
3
4

Average-time for searching 1.98
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Optimal binary 
search tree

OPTIMAL OPTIMAL
X=Average Y=Average

OPTIMAL

X’ and Y’ All possible ways
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

XK

X1 – Xk-1 Xk+1 – Xn
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

XK

Xk+1 – Xn

X1 X2 XK-1

X1 X2
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

))((min ,11,,11,, jkkijkkikji PPTTPjkiT +−+− ++++≤≤
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

))((min ,11,,, jkkijiji TTPjkiT +− ++≤≤
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

Min
Ti+1,j

Ti,i+Ti+2,j
Ti,i+1+Ti+3,j
Ti,i+2+Ti+4,j

…
Ti,j-1
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Optimal binary 
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

PROBABILITY

1
2

n
1 2 n
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0/1 Knapsack 
problem

Sk: Set of items numbered 1 to k.
Define B[k,w] = best selection from Sk with weight exactly equal 
to w
Best subset of Sk with weight exactly w is either:

- the best subset of Sk-1 weight w
- the best subset of Sk-1 weight w-wk plus item k

⎩
⎨
⎧

+−−−
>−

=
otherwise}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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0/1 Knapsack 
problem

Algorithm 0-1Knapsack(S, W):
Input: set S of items with benefit bi
and weight wi; max. weight W
Output: value of best subset with weight ≤ W
for w ← 0 to W do

B[0,w] ← 0
for k ← 1 to n do

for w ← W down to wk do
B[k,w] ← max(B[k-1,w],

B[k-1,w-wk]+bk)

Since B[k,w] is defined in terms of B[k-1,*], we can 
reuse the same array

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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0/1 Knapsack 
problem

Algorithm 0-1Knapsack(S, W):
Input: set S of items with benefit bi
and weight wi; max. weight W
Output: value of best subset with weight ≤ W
for w ← 0 to W do

B[0,w] ← 0
for k ← 1 to n do

for w ← W downto wk do
B[k,w] ← max(B[k-1,w],

B[k-1,w-wk]+bk)

Since B[k,w] is defined in terms of B[k-1,*], we can 
reuse the same array

Running time: O(nW).

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg


45

All shortest 
pathsFloyd-Warshall

AlgorithmGiven a directed weighted graph G = (V,E), 
find all shortest paths between any two vertices in G.

• If we already know the all shortest paths whose intermediate 
vertices belong to the set {1,…,k-1}, how can we find all 
shortest paths with intermediate vertices {1,…,k}?

• Consider the shortest path p between (i, j), whose intermediate 
vertices belong to {1,…k}

• If k is not an intermediate vertex in p, then p is the path found 
in the previous iteration.

• If k is in p, then we can write p as i~> k ~> j, where the 
intermediate vertices in i~> k and k~> j belong to {1,…,k-1}.

di,j(k) = min(di,j (k-1), di,k(k-1) + dk,j(k-1))
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All shortest 
pathsFloyd-Warshall

AlgorithmGiven a directed weighted graph G = (V,E), 
find all shortest paths between any two vertices in G.

The algorithm: 
–Initialize: D(0) =W
–For k = 1…|V|

– For i = 1…|V|
–For j = 1…|V|

»di,j(k) = min(di,j(k-1), di,k(k-1)+dk,j(k-1))
Time complexity = O(|V|3)
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All shortest 
paths

21 3

2

8

3

5

2

D0 1 2 3

1 0 8 5

2 3 0 ∞

3 ∞ 2 0

Floyd-Warshall
Algorithm
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All shortest 
paths

21 3

2

8

3

5

2

D1 1 2 3

1 0 8 5

2 3 0 8

3 ∞ 2 0

Floyd-Warshall
Algorithm
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All shortest 
paths

21 3

2

8

3

5

2

D2 1 2 3

1 0 8 5

2 3 0 8

3 5 2 0

Floyd-Warshall
Algorithm
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All shortest 
paths

21 3

2

8

3

5

2

D3 1 2 3

1 0 7 5

2 3 0 8

3 5 2 0

Floyd-Warshall
Algorithm
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All shortest 
paths

21 3

2

8

3

5

2

D3 1 2 3

1 0 7 5

2 3 0 8

3 5 2 0

Floyd-Warshall
Algorithm
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Longest common 
subsequence

Given two sequences
X = ABCB
Y = BDCAB
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Longest common 
subsequence

Find the longest common subsequence of  two sequences
X = ABCB
Y = BDCAB

Brute force algorithm would compare each subsequence 
of X with the symbols in Y.

If |X| = m, |Y| = n, then there are 2m subsequences of x; 
we must compare each with Y (n comparisons).

So the running time of the brute-force algorithm is O(n 2m).

Notice that the LCS problem has optimal substructure: 
solutions of subproblems are parts of the final solution.
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Longest common 
subsequence

Define Xi, Yj to be the prefixes of X and Y of length i 
and j respectively
Define c[i,j] to be the length of LCS of Xi and Yj
Then the length of LCS of X and Y will be c[m,n]

⎩
⎨
⎧

−−
=+−−

=
otherwise]),1[],1,[max(

],[][ if1]1,1[
],[

jicjic
jyixjic

jic

Find the longest common subsequence of  two sequences
X = ABCB
Y = BDCAB



55

Longest common 
subsequence

j       0        1          2         3        4         5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

0
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

00
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

00 0
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

000
+1



59

Longest common 
subsequence

j       0        1          2         3        4         5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

C

B

0

0

0

0

1000 1
+1
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

C

B

0

0

0

0

1000 1

1 1 11
+1
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

C

Yj BB ACD

0 000000

1

2

3

4

i

A

B

B

0

0

0

0

1000 1

1 21 11
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

C

Yj BB ACD

0 00000

0

0 1 21 1

1 1

1

0

1

2

3

4

i

A

B

B

0

0

1000 1

+1
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

B

C

0

0

0

0

1000 1

1 21 1

1 1 2

1

22
+1
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

B

C

0

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2
+1
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Longest common 
subsequence

j       0        1          2         3        4         5

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

0

1

2

3

4

i

TIME COMPLEXITY = O(mn)

_ B D C A B
⏐ ⏐ ⏐

A B _ C _ B
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Natural 
language

Given a sentence (sequence of words)

X = x1x2x3…xn with n words.

Find a grammar tree matched to X.

John called Mary from Denver.

Given GRAMMAR
S → NP VP
VP → V NP
NP → NP PP
VP → VP PP
PP → P NP

John NP
called V
Mary NP
from P
Denver NP
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Natural 
language

John called Mary from Denver.

Given GRAMMAR
S → NP VP
VP → V NP
NP → NP PP
VP → VP PP
PP → P NP

John NP
called V
Mary NP
from P
Denver NP
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Natural 
language

John   called  Mary   from  Denver

S

VP PP

NP VP

V NP NPP
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Natural 
language

John   called  Mary   from  Denver

S

PP

NP VP

NP

NP

V
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John called Mary from Denver

Natural 
language
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NP

P Denver

NP from

V Mary

NP called

John

Natural 
language
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NP

P Denver

NP from

X V Mary

NP called

John

Natural 
language
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NP

P Denver

VP NP from

X V Mary

NP called

John

Natural 
language
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NP

X P Denver

VP NP from

X V Mary

NP called

John

Natural 
language
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PP NP

X P Denver

VP NP from

X V Mary

NP called

John

Natural 
language
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PP NP

X P Denver

S VP NP from

V Mary

NP called

John

Natural 
language
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PP NP

X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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NP PP NP

X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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VP1

VP2

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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S VP1

VP2

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language
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S VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural 
language

COMPLEXITY TIME = O(n3 )
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Stereo vision

Ordering constraint…
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Stereo vision
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… …
Left scanline Right scanline

Stereo vision



88

… …
Left scanline

Match

Right scanline

Match

MatchOcclusion Disocclusion

Stereo vision
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Three cases:
Sequential – add cost of match (small if intensities 
agree)
Occluded – add cost of no match (large cost)
Disoccluded – add cost of no match (large cost)

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels

Stereo vision
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Dynamic programming yields 
the optimal path through 
grid. This is the best set of 
matches that satisfy the 
ordering constraint

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Start

End

Stereo vision
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Scan across grid computing 
optimal cost for each node 
given its upper-left 
neighbors.
Backtrack from the terminal 
to get the optimal path.

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Terminal

Stereo vision
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Scan across grid computing 
optimal cost for each node 
given its upper-left 
neighbors.
Backtrack from the terminal 
to get the optimal path.

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Terminal

Stereo vision
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Scan across grid computing 
optimal cost for each node 
given its upper-left 
neighbors.
Backtrack from the terminal 
to get the optimal path.

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Terminal

Stereo vision
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Problems
Three groups of complexity problems

•Subset problems (2n)

•Permutation problems (n!)

•Partition problems (n!)

State-space graph / tree 
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Subset 
problems

1st element

2nd element

3rd element

N

Y

N NY Y

Y N Y N
Y N Y N

Y N

All yes All no

Number of nodes = 2n+1 - 1
nth element

N
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Subset 
problems

N

Y,N,N,…,N

Y,N,Y,…,NY,Y,N,…,N

Y,Y,N,N,…,Y

Y,N,N,…,Y

Y,Y,Y,N,…,N Y,Y,N,Y,…,N

Y,Y,Y,…,Y

All yes

All no

N,N,N,…,YN,Y,N,…,N

Number of nodes = 2n

N,N,N,…,N

0000
1000
1100
1110
1111
1101
1010
1011
1001
0100
0110
0111
0101
0010
0011
0001
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Permutation 
problems

2

1st position

2nd position

3rd position

1

N 31

N

N

3 N 42

nth position

N2 3

N

3

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142

…
4312
4321
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Partition 
problems

1st element

2nd element

3rd element

N

1

N N1 1

1 N 1 N
1 N 1 N

1 N

All 1 All nNumber of nodes = nn

nth element

N
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Traversal
Three possible ways

Depth-first technique

Breadth-first technique

Best-first technique
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Back tracking
Technique

Depth-first technique

Keep track and return back when it 
cannot be branched.
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Branch & bound
1 2 3 4

A 10 7 13 15

B 12 5 16 12

C 14 9 14 20

D 11 7 14 13
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