
March 28, 2005

ynamic
programming

Athasit Surarerks

T H E O R E T I C A L M O D E L

2

Introduction
Dynamic Programming is a general algorithm
design paradigm.
Dynamic Programming is a technique for
solving problems “bottom-up”:
first, solve small problems, and then use the
solutions to solve larger problems.
What kind of problems can Dynamic
Programming solve efficiently?

3

Introduction
Optimal substructure: The optimal solution
contains optimal solutions to sub-problems.
Overlapping sub-problems: the number of
different sub-problems is small, and a
recursive algorithm might solve the same
sub-problem a few times.

4

Optimization
problems

Optimization problem is an important and
practical class of computational problems.
For most of these, the best known algorithm
runs in exponential time.

5

Rabbits on an
island

month

0

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

6

month

1

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an
island

7

month

2

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an
island

8

month

3

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an
island

9

month

4

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Rabbits on an
island

10

month

5

By Leonardo di Pisa, 13th century

A pair of rabbits does not breed until they are two months old,
then each pair produces another pair each month.

Assuming that no rabbits ever die,
how many pairs of rabbits after n months.

Rabbits on an
island

11

By Leonardo di Pisa, 13th century

Rabbits on an
island

Fibonacci Number
F0 = 1
F1 = 1
F2 = F0 + F1 = 2
F3 = F1 + F2 = 3
F4 = F2 + F3 = 5
…
Fn = Fn-2 + Fn-1

1

Exponential time → Linear time

OVERLAPPING SUBPROBLEMS

12

0/1 Knapsack
problem

Choose items with maximum total
benefit but with some limitation.

weight
value

4 kgs 2 kgs 2 kgs 6 kgs 2 kgs

B200 B30 B60 B250 B800

Max 9 kgs

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

13

0/1 Knapsack
problem

B800

B1050

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

14

0/1 Knapsack
problem

same solution

OVERLAPPING

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

15

0/1 Knapsack
problem

Choose items with maximum total
benefit but with some limitation.

weight
value

4 kgs 2 kgs 2 kgs 6 kgs 2 kgs

B200 B30 B60 B250 B800

Max 9 kgs

Number of solutions : 2n (n : number of books)

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

16

0/1 Knapsack
problem

Choose items with maximum total
benefit but with some limitation.

weight
value

4 kgs 2 kgs 2 kgs 6 kgs 2 kgs

B200 B30 B60 B250 B800

Max 9 kgs

OBJECTIVE FUNCTION:
otherwise
selected

xi
⎩
⎨
⎧

=
0
1)max(

1
∑
=

n

i
iivx

Wwx
n

i
ii ≤∑

=1
CONSTRAINT

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

17

Linear Partition

Partition all fields into 3 groups with approximately
the same size.

X1 X2 X3 X4 X5 X6 X7 X8

P2P1 P3

OBJECTIVE FUNCTION: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

t

si
ij xPmaxmin

NUMBER OF SOLUTIONS C(n+k-1,k-1)

18

Printing neatly
Application for word processor
Problem: English text with n words

word i with length wi (no.of.chars)
Each line contains max M chars

Solution: Close to right justified text

Penalty: sum of right blank-end square.

() ⎥
⎦

⎤
⎢
⎣

⎡
++−−= ∑

+=
−

−

i

i

x

xk
kiii wxxMS

1
1

1

)1(blank-end of line i

),...,,,(321 mxxxx xj : last wordth of line j.

Objective function
⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

k
kS

1

2min

19

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

Cost of ((AB)C)D) is 1000+100+50 = 1150

Cost of ((AB)(CD) is 1000+200+1000 = 2200
Cost of (A(B(CD))) is 200+2000+500 = 2700HOW MANY SOLUTIONS ?

20

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

Number of solutions = number of sequence of multiplication

21

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

ABCD

A BCD AB CD ABC D

B CD BC D A BC AB CA B

C D A B

C D

B C B C200

200

200 200 1000

10002200 300 250 1100

800 2200 300

22

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk

Example: A5×10 × B10×20 × C20×1 × D1×10

ABCD

A BCD AB CD ABC D

B CD BC D A BC AB CA B

C D A B

C D

B C B C200

200

200 1000

10002200 300 1100

800 2200

(A(BC)D)
300

23

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

()jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n

24

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

()jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n

25

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

()jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n

26

Sequence of matrix
multiplication

Given M1 M2 M3 M4 …Mk with di-1×di dimension.
Find an algorithm for

M1 × M2 × M3 × M4 × … × Mk
Let Ti,j be the cost of multiplication of Mi .. Mj

()jkijkkiji dddTTjkiT ××++−≤≤= + ,1,, 1min

DICTIONARY

1
2

n
1 2 n

27

Optimal binary
search tree

DATA Probability

A 0.25
B 0.22
C 0.20
D 0.18
E 0.08
F 0.05
G 0.02

Create an optimal binary search tree

28

Optimal binary
search tree

Create an optimal binary search tree

D

B F

A C E G

DATA Probability

A 0.25
B 0.22
C 0.20
D 0.18
E 0.08
F 0.05
G 0.02

TIME

3
2
3
1
3
2
3

Average-time for searching 2.37

29

Optimal binary
search tree

Create an optimal binary search tree

B

A D

E G

C F

DATA Probability

A 0.25
B 0.22
C 0.20
D 0.18
E 0.08
F 0.05
G 0.02

TIME

2
1
3
2
4
3
4

Average-time for searching 1.98

30

Optimal binary
search tree

OPTIMAL OPTIMAL
X=Average Y=Average

OPTIMAL

X’ and Y’ All possible ways

31

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

XK

X1 – Xk-1 Xk+1 – Xn

32

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

XK

Xk+1 – Xn

X1 X2 XK-1

X1 X2

33

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

34

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

35

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

36

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

37

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

38

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

))((min ,11,,11,, jkkijkkikji PPTTPjkiT +−+− ++++≤≤

39

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

))((min ,11,,, jkkijiji TTPjkiT +− ++≤≤

40

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

Min
Ti+1,j

Ti,i+Ti+2,j
Ti,i+1+Ti+3,j
Ti,i+2+Ti+4,j

…
Ti,j-1

41

Optimal binary
search tree

DATA Probability

X1 P1
X2 P2

X3 P3

X4 P4
X5 P5
X6 P6

x7 p7

Create an optimal binary search tree

DICTIONARY
1
2

n
1 2 n

solution

PROBABILITY

1
2

n
1 2 n

42

0/1 Knapsack
problem

Sk: Set of items numbered 1 to k.
Define B[k,w] = best selection from Sk with weight exactly equal
to w
Best subset of Sk with weight exactly w is either:

- the best subset of Sk-1 weight w
- the best subset of Sk-1 weight w-wk plus item k

⎩
⎨
⎧

+−−−
>−

=
otherwise}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

43

0/1 Knapsack
problem

Algorithm 0-1Knapsack(S, W):
Input: set S of items with benefit bi
and weight wi; max. weight W
Output: value of best subset with weight ≤ W
for w ← 0 to W do

B[0,w] ← 0
for k ← 1 to n do

for w ← W down to wk do
B[k,w] ← max(B[k-1,w],

B[k-1,w-wk]+bk)

Since B[k,w] is defined in terms of B[k-1,*], we can
reuse the same array

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

44

0/1 Knapsack
problem

Algorithm 0-1Knapsack(S, W):
Input: set S of items with benefit bi
and weight wi; max. weight W
Output: value of best subset with weight ≤ W
for w ← 0 to W do

B[0,w] ← 0
for k ← 1 to n do

for w ← W downto wk do
B[k,w] ← max(B[k-1,w],

B[k-1,w-wk]+bk)

Since B[k,w] is defined in terms of B[k-1,*], we can
reuse the same array

Running time: O(nW).

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

45

All shortest
pathsFloyd-Warshall

AlgorithmGiven a directed weighted graph G = (V,E),
find all shortest paths between any two vertices in G.

• If we already know the all shortest paths whose intermediate
vertices belong to the set {1,…,k-1}, how can we find all
shortest paths with intermediate vertices {1,…,k}?

• Consider the shortest path p between (i, j), whose intermediate
vertices belong to {1,…k}

• If k is not an intermediate vertex in p, then p is the path found
in the previous iteration.

• If k is in p, then we can write p as i~> k ~> j, where the
intermediate vertices in i~> k and k~> j belong to {1,…,k-1}.

di,j(k) = min(di,j (k-1), di,k(k-1) + dk,j(k-1))

46

All shortest
pathsFloyd-Warshall

AlgorithmGiven a directed weighted graph G = (V,E),
find all shortest paths between any two vertices in G.

The algorithm:
–Initialize: D(0) =W
–For k = 1…|V|

– For i = 1…|V|
–For j = 1…|V|

»di,j(k) = min(di,j(k-1), di,k(k-1)+dk,j(k-1))
Time complexity = O(|V|3)

47

All shortest
paths

21 3

2

8

3

5

2

D0 1 2 3

1 0 8 5

2 3 0 ∞

3 ∞ 2 0

Floyd-Warshall
Algorithm

48

All shortest
paths

21 3

2

8

3

5

2

D1 1 2 3

1 0 8 5

2 3 0 8

3 ∞ 2 0

Floyd-Warshall
Algorithm

49

All shortest
paths

21 3

2

8

3

5

2

D2 1 2 3

1 0 8 5

2 3 0 8

3 5 2 0

Floyd-Warshall
Algorithm

50

All shortest
paths

21 3

2

8

3

5

2

D3 1 2 3

1 0 7 5

2 3 0 8

3 5 2 0

Floyd-Warshall
Algorithm

51

All shortest
paths

21 3

2

8

3

5

2

D3 1 2 3

1 0 7 5

2 3 0 8

3 5 2 0

Floyd-Warshall
Algorithm

52

Longest common
subsequence

Given two sequences
X = ABCB
Y = BDCAB

53

Longest common
subsequence

Find the longest common subsequence of two sequences
X = ABCB
Y = BDCAB

Brute force algorithm would compare each subsequence
of X with the symbols in Y.

If |X| = m, |Y| = n, then there are 2m subsequences of x;
we must compare each with Y (n comparisons).

So the running time of the brute-force algorithm is O(n 2m).

Notice that the LCS problem has optimal substructure:
solutions of subproblems are parts of the final solution.

54

Longest common
subsequence

Define Xi, Yj to be the prefixes of X and Y of length i
and j respectively
Define c[i,j] to be the length of LCS of Xi and Yj
Then the length of LCS of X and Y will be c[m,n]

⎩
⎨
⎧

−−
=+−−

=
otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic
jyixjic

jic

Find the longest common subsequence of two sequences
X = ABCB
Y = BDCAB

55

Longest common
subsequence

j 0 1 2 3 4 5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

0

56

Longest common
subsequence

j 0 1 2 3 4 5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

00

57

Longest common
subsequence

j 0 1 2 3 4 5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

00 0

58

Longest common
subsequence

j 0 1 2 3 4 5

Xi

A

Yj BB ACD

0 000000

1

2

3

4

i

B

C

B

0

0

0

0

000
+1

59

Longest common
subsequence

j 0 1 2 3 4 5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

C

B

0

0

0

0

1000 1
+1

60

Longest common
subsequence

j 0 1 2 3 4 5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

C

B

0

0

0

0

1000 1

1 1 11
+1

61

Longest common
subsequence

j 0 1 2 3 4 5

Xi

C

Yj BB ACD

0 000000

1

2

3

4

i

A

B

B

0

0

0

0

1000 1

1 21 11

62

Longest common
subsequence

j 0 1 2 3 4 5

Xi

C

Yj BB ACD

0 00000

0

0 1 21 1

1 1

1

0

1

2

3

4

i

A

B

B

0

0

1000 1

+1

63

Longest common
subsequence

j 0 1 2 3 4 5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

B

C

0

0

0

0

1000 1

1 21 1

1 1 2

1

22
+1

64

Longest common
subsequence

j 0 1 2 3 4 5

Xi

B

Yj BB ACD

0 000000

1

2

3

4

i

A

B

C

0

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2
+1

65

Longest common
subsequence

j 0 1 2 3 4 5

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

0

1

2

3

4

i

TIME COMPLEXITY = O(mn)

_ B D C A B
⏐ ⏐ ⏐

A B _ C _ B

66

Natural
language

Given a sentence (sequence of words)

X = x1x2x3…xn with n words.

Find a grammar tree matched to X.

John called Mary from Denver.

Given GRAMMAR
S → NP VP
VP → V NP
NP → NP PP
VP → VP PP
PP → P NP

John NP
called V
Mary NP
from P
Denver NP

67

Natural
language

John called Mary from Denver.

Given GRAMMAR
S → NP VP
VP → V NP
NP → NP PP
VP → VP PP
PP → P NP

John NP
called V
Mary NP
from P
Denver NP

68

Natural
language

John called Mary from Denver

S

VP PP

NP VP

V NP NPP

69

Natural
language

John called Mary from Denver

S

PP

NP VP

NP

NP

V

70

John called Mary from Denver

Natural
language

71

NP

P Denver

NP from

V Mary

NP called

John

Natural
language

72

NP

P Denver

NP from

X V Mary

NP called

John

Natural
language

73

NP

P Denver

VP NP from

X V Mary

NP called

John

Natural
language

74

NP

X P Denver

VP NP from

X V Mary

NP called

John

Natural
language

75

PP NP

X P Denver

VP NP from

X V Mary

NP called

John

Natural
language

76

PP NP

X P Denver

S VP NP from

V Mary

NP called

John

Natural
language

77

PP NP

X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

78

NP PP NP

X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

79

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

80

VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

81

VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

82

VP1

VP2

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

83

S VP1

VP2

NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

84

S VP NP PP NP

X X X P Denver

S VP NP from

X V Mary

NP called

John

Natural
language

COMPLEXITY TIME = O(n3)

85

Stereo vision

Ordering constraint…

86

Stereo vision

87

… …
Left scanline Right scanline

Stereo vision

88

… …
Left scanline

Match

Right scanline

Match

MatchOcclusion Disocclusion

Stereo vision

89

Three cases:
Sequential – add cost of match (small if intensities
agree)
Occluded – add cost of no match (large cost)
Disoccluded – add cost of no match (large cost)

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels

Stereo vision

90

Dynamic programming yields
the optimal path through
grid. This is the best set of
matches that satisfy the
ordering constraint

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Start

End

Stereo vision

91

Scan across grid computing
optimal cost for each node
given its upper-left
neighbors.
Backtrack from the terminal
to get the optimal path.

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Terminal

Stereo vision

92

Scan across grid computing
optimal cost for each node
given its upper-left
neighbors.
Backtrack from the terminal
to get the optimal path.

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Terminal

Stereo vision

93

Scan across grid computing
optimal cost for each node
given its upper-left
neighbors.
Backtrack from the terminal
to get the optimal path.

Occluded Pixels

Left scanline

D
is-occluded Pixels

R
ight scanline

Terminal

Stereo vision

94

Problems
Three groups of complexity problems

•Subset problems (2n)

•Permutation problems (n!)

•Partition problems (n!)

State-space graph / tree

95

Subset
problems

1st element

2nd element

3rd element

N

Y

N NY Y

Y N Y N
Y N Y N

Y N

All yes All no

Number of nodes = 2n+1 - 1
nth element

N

96

Subset
problems

N

Y,N,N,…,N

Y,N,Y,…,NY,Y,N,…,N

Y,Y,N,N,…,Y

Y,N,N,…,Y

Y,Y,Y,N,…,N Y,Y,N,Y,…,N

Y,Y,Y,…,Y

All yes

All no

N,N,N,…,YN,Y,N,…,N

Number of nodes = 2n

N,N,N,…,N

0000
1000
1100
1110
1111
1101
1010
1011
1001
0100
0110
0111
0101
0010
0011
0001

97

Permutation
problems

2

1st position

2nd position

3rd position

1

N 31

N

N

3 N 42

nth position

N2 3

N

3

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142

…
4312
4321

98

Partition
problems

1st element

2nd element

3rd element

N

1

N N1 1

1 N 1 N
1 N 1 N

1 N

All 1 All nNumber of nodes = nn

nth element

N

99

Traversal
Three possible ways

Depth-first technique

Breadth-first technique

Best-first technique

100

Back tracking
Technique

Depth-first technique

Keep track and return back when it
cannot be branched.

101

Branch & bound
1 2 3 4

A 10 7 13 15

B 12 5 16 12

C 14 9 14 20

D 11 7 14 13

	Introduction
	Introduction
	Optimization problems
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	Rabbits on an island
	0/1 Knapsack problem
	0/1 Knapsack problem
	0/1 Knapsack problem
	0/1 Knapsack problem
	0/1 Knapsack problem
	Linear Partition
	Printing neatly
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Sequence of matrix multiplication
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	Optimal binary search tree
	0/1 Knapsack problem
	0/1 Knapsack problem
	0/1 Knapsack problem
	All shortest paths
	All shortest paths
	All shortest paths
	All shortest paths
	All shortest paths
	All shortest paths
	All shortest paths
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Longest common subsequence
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Natural language
	Stereo vision
	Stereo vision
	Stereo vision
	Stereo vision
	Stereo vision
	Stereo vision
	Stereo vision
	Stereo vision
	Stereo vision
	Problems
	Subset problems
	Subset problems
	Permutation problems
	Partition problems
	Traversal
	Back tracking
	Branch & bound

