
A Low-Resource AES Encryption Circuit Using Dynamic Reconfiguration

Peera Thontirawong and Prabhas Chongstitvatana
Department of Computer Engineering, Chulalongkorn University

Bangkok, Thailand
Email: prabhas@chula.ac.th

Abstract

This paper presents an implementation of an
Advanced Encryption Standard (AES) encryption
unit using dynamic reconfiguration based on the
Xilinx Spartan-3 FPGA platform. The proposed
design reuses resource of FPGA by adapting
dynamic reconfiguration to reduce the number of
resource used in the circuit. By changing circuits at
runtime, the size of the whole circuit is limited to the
largest reconfigurable module. The implementation
of the dynamic reconfigurable AES encryption unit
on XC3S200-4FT256 requires only 359 slices, while
achieving throughput about 18 Kbps, and 16 Mbps if
assume that there is no reconfiguration delay.

Key Words: AES, FPGA, Dynamic Reconfiguration

1. Introduction
In 2001, the National Institute of Standards and

Technology (NIST) accepted the Rijndael algorithm
[1], designed by Joan Daemon and Vincent Rijmen,
as the Advanced Encryption Standard (AES) [2].
This new AES has replaced the Data Encryption
Standard (DES) [3]. The AES is more robust than
DES but it is also more complex than DES. This
complexity demands more computational effort from
an AES device. The hardware implementation of the
AES algorithm is attractive since the software
implementation is unable to satisfy the higher
throughput requirement.

The hardware designs and implementations for
the AES algorithm have been invented by many
researches. Many Field Programmable Gate Array
(FPGA) implementations of the AES algorithm have
been introduced [4-6]. Motivated by the need for
higher throughput with limited resource, several
hardware designs and implementations of the AES
algorithm have proposed either for very high
throughput [6] or for more limited resource needed
[4,5].

Presently, the privacy of data is very important.
As mobile communication devices are becoming
smaller and more ubiquitous, the need for encryption

capability in these devices arise. The AES algorithm
implemented on these devices is necessary. Since the
FPGA is the most adaptive device, the
implementation of the AES algorithm on limited
resource FPGA is interesting.

The dynamic reconfiguration is an idea to reuse
the resource in FPGA, so the resource is used more
efficiently. This paper proposes an alternative design
to implement the AES encryption algorithm in
limited resource FPGA by using 8 bits datapath and
dynamic reconfiguration concept.

The remainder of this paper is organized as
follows. In Section 2, the AES algorithm is briefly
described. Section 3 presents the design and
implementation. Section 4 shows the implementation
result, followed by the conclusion in Section 5.

2. The AES Algorithm
Refer to FIPS 197 [2], the AES algorithm

operates on a block of 128 bits input and transforms
it into an encrypted block of 128 bits output by using
a 128, 192 or 256 bits cipher key. The number of
rounds to be performed during the execution of the
algorithm depends on the key size (see Table 1).

Table 1 Key-Block-Round Combinations

Algorith
m

Key
Length

(Nk words)

Block Size
(Nb words)

Number of
Rounds

(Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

The AES encryption algorithm is separated into
two parts: Cipher and Key Expansion. They are
described in following subsections.

2.1 Cipher
The Cipher is described in the pseudo code in

Figure 1, and its transformation process is described
in following subsections.

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4, Nb]
state = in
AddRoundKey(state, w[0, Nb-1])
for round = 1 step 1 to Nr-1

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[Nr*Nb, (round+1)*Nb-1])

end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr-1)*Nb-1])
out = state

end
Figure 1 Pseudo code for the Cipher. Note that the
array w[] contains the key schedule. Nb is the block
size. Nr is the number of round. AddRoundKey,
SubBytes, ShiftRows and MixColumns are
subfunctions.

SubBytes Transformation
The SubBytes transformation is a non-linear byte

substitution that operates independently on each byte
of the State using a substitution table (S-box), see
Figure 2.

Figure 2 SubBytes applies the S-box to each byte of
the state.

Figure 3 ShiftRows cyclically shifts the last three
rows in the State.

ShiftRows Transformation
In the ShiftRows transformation, the bytes in the

last three rows of the State are cyclically shifted over
different number of bytes (offsets), see Figure 3.

MixColumns Transformation
In the MixColumns transformation, each column

is treated as a four-term polynomial over GF(28) and
multiplied modulo with a fixed polynomial a(x),
given by (1).

}02{}01{}01{}03{)(23 +++= xxxxa (1)

This can be written as a matrix multiplication (2).

)()()(xsxaxsLet ⊗=′

Nbcfor

s
s
s
s

s
s
s
s

c

c

c

c

c

c

c

c

≤≤




































=


















′
′
′
′

0

02010103
03020101
01030201
01010302

,3

,2

,1

,0

,3

,2

,1

,0

(2)

AddRoundKey Transformation
In the AddRoundKey transformation, a Round

Key is added to the State by a simple bitwise XOR
operation.

2.2 Key Expansion
The expansion of the input key into the key

schedule proceeds according to the pseudo code in
Figure 4.

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin

word temp
i = 0
while (i < Nk)
 w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
 i = i+1
end while
i = Nk
while (i < Nb*(Nr+1))
 temp = w[i-1]
 if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
 else if (Nk > 6 and I mod Nk = 4)

temp = SubWord(temp)
 end if
 w[i] = w[i-Nk] xor temp
 i = i+1
end while
out = state

end
Figure 4 Pseudo code for Key Expansion. Note that
the array w[] contains the key schedule. Nk is the key
size. Nb is the block size. Nr is the number of round.
SubWord and RotWord are subfunctions.

SubWord is a function that takes a four-byte input
word and applies the S-box to each of the four bytes
to produce an output word. The function RotWord
takes a word [a0, a1, a2, a3] as an input, performs a
cyclic permutation, and returns the word [a1, a2, a3,
a0]. The round constant word array, Rcon[i], contains
the values given by [xi-1, {00}, {00}, {00}], with xi-1

being powers of x (x is denoted as {02}) in the field
GF(28).

3. Design and Implementation
To implement a dynamic reconfigurable circuit

on a FPGA device, the device should support partial
reconfiguration. This allows some part of the circuit
to be reconfigured while the remaining circuit is
preserved. In this paper, the implementation is done
on Xilinx FPGA Spartan-3 platform
(XC3S200-4FT256) which supported partial
reconfiguration.

For Spartan-3 FPGA, a reconfiguration data is
loaded on a column-basis. This means that each
reconfigurable module must occupied an entire
column. Since Spartan-3 does not provide TBUFs, so
the bus macro which is used to transfer data between
fixed modules and reconfigurable modules have to be
implemented by slices. The implementation of slices
based bus macro is presented in [7]. The
implemented bus macros are shown in Figure 5.

Figure 5 Basic 8-input, 8-output left-to-right bus
macro

To make the simplest dynamic reconfigurable
circuit, only one reconfigurable module is the best
choice because the number of bus macro used in the
circuit increased when the number of bit used by
datapath and control is increasing. The 8-bit datapath
is selected in order to minimize the number of bus
macro used.

There are four main transformations of AES
encryption algorithm so the AES encryption circuit

can be separated into five modules. They are SBox
module, MixColumn module, XOR module, Register
module and Control Unit module. SBox module,
MixColumn module and XOR module are
reconfigurable modules because these three modules
do not work concurrently. Two modules,
Reconfiguration Control Unit module and
Reconfiguration Program Memory module are
necessary to make the circuit dynamically
reconfigure itself. These modules are described in the
following subsections.

3.1 SBox Module
SBox module is a reconfigurable module that

performs SubBytes and SubWord transformations.
This module is implemented by using a substitution
table or SBox. SBox module requires 16 bus macros
for datapath, 8 for 8-bit input and 8 for 8-bit output.

3.2 MixColumn Module
MixColumn module performs MixColumns

transformation, and it is reconfigurable. Because the
MixColumns transformation operated on 32-bit data,
MixColumn module requires 4 clock cycles to
produce first 8-bit output and two additional control
signals to generate correct output. The design of
MixColumn module is shown in Figure 6.

[7]

8'h1B
{[6:0],1'b0}

OUT

IN

Figure 6 Design of MixColumn module

MixColumn module requires 16 bus macros for
datapath, 8 for 8-bit input and 8 for 8-bit output, and
it requires additional 2 bus macros for two control
signals.

3.3 XOR Module
XOR module performs AddRoundKey and

AddRcon transformation, and it is reconfigurable.
This module is implemented by eight 2-bit XOR
gates. XOR module requires 24 bus macros for
datapath, 16 for two 8-bit input and 8 for 8-bit output.

3.4 Register Module
Register module stores current State and Key of

AES encryption algorithm, it performs ShiftRows
and RotWord transformations, and it also generates
Rcon. This module is implemented by three 16x8-bit
registers, 4x8-bit register, 10x8-bit ROM, eight 1-
to-2 decoders, eight 4-to-1 multiplexors and eight 2-
to-1 multiplexors.

Two 16x8-bit registers store State. The input of
these two registers is coming from a decoder.
ShiftRows transformation is done by select the right
data from one register and sends it to another one.
Another 16x8-bit register stores Key. A 4x8-bit
register store temporary Key while doing Key
Expansion and a 10x8-bit ROM stores Rcon.

Two multiplexors direct the correct data to two 8-
bit bus macros. First bus macro accepts State, Key
and temporary Key. Another bus macro accepts Key
and Rcon.

3.5 Control Unit Module
Control Unit module is a one-hot finite state

machine that controls the process of 8-bit datapath
AES encryption. This module has 134 states as
shown in Figure 7

In Figure 7, Read State, Read Key and Write
State are 16-states that read input State, read input
Key and write output State consecutively.
ReconfigSBox, ReconfigMixColumn, ReconfigXOR
are wait states that waiting for a completion of
reconfiguration process.

Read
StateReset Read

Key

Reconfig
XOR1

Add
RoundKey

Write
State

LastRound

Reconfig
SBox

!LastRound

SubWord

SubBytes

Reconfig
MixColumn

Reconfig
XOR2

Calculate
Key

MixColumns

!LastRound

LastRound

Figure 7 Control Unit module state diagram

3.6 Reconfiguration Control Unit Module
Reconfiguration Control Unit module is a finite

state machine that controls the reconfiguration
process. This module selects the correct
reconfiguration program from Reconfiguration
Program Memory and generates correct
reconfiguration signals to reconfigure FPGA
dynamically.

The dynamic reconfiguration of Spartan-3 is done
by SelectMAP reconfiguration mode. This mode uses
8-bit wide data to reconfig FPGA, and requires some
additional signals in order to perform reconfiguration.
More information of Spartan-3 configuration can be
found in 6.

3.7 Reconfiguration Program Memory
Module

Reconfiguration Program Meomory module
stores the programs of reconfigurable module. This
module requires large amount of memory because the
programs size is large. The best solution for this
module is to implement it on an external RAM or
ROM.

Since the bus macros of every reconfigurable
module should be identical, the maximum number of
bus macro is defined by XOR module and
MixColumn module. In addition, three bus macros
are added to ensure that the reconfigurable module is
correct, and one bus macro is added to complete
routing of unused signals. The total number of bus
macro used in this circuit is 30. The final dynamic
reconfigurable AES encryption’s architecture is
shown in Figure 8.

4. Implementation Result
After implementing the dynamic reconfigurable

AES encryption circuit in XC3S200-4FT256 FPGA,
the design occupies 359 slices. The maximum tested
frequency is 50 MHz.

The throughput of the AES-128 encryption circuit
can be approximately computed from the equation
(3), while cycle is the number of clock cycles used to
encrypt 128-bit data, and it is measured from the
counter which is embedded in the circuit.

cycle
frequencybpsThroughput ×= 128)((3)

The implementation result of the dynamic
reconfigurable AES encryption is shown in
Table 2. As shown in Table 2 the slowest process of
dynamic reconfigurable AES encryption circuit is the
reconfiguration, so the throughput is only 18 Kbps. If
the reconfiguration delay is omitted, the throughput

R
ec

on
fig

ur
at

io
n

P
ro

gr
am

 M
em

or
y

M
od

ul
e

R
ec

on
fig

ur
at

io
n

C
on

tro
l U

ni
t M

od
ul

e

C
on

tro
l U

ni
t M

od
ul

e

R
ec

on
fig

ur
ab

le

M
od

ul
e

R
eg

is
te

r B
an

k
M

od
ul

e

I/OAddress

Program

Status

Config

DataStatus Data

Control

Status

Control

FPGA Reconfigurable

Figure 8 Dynamic reconfigurable AES encryption architecture

Table 2 Implementation result
Device XC3S200-4FT256
Architecture 8-bit
Total No. of Slice used 359

Static module 232
SBox module 127
MixColumn module 103
XOR module 63

No. of BRAM used 0
No. of external RAM used 25872 bytes
Frequency 50 MHz
Throughput 17.895 Kbps
Total No. of Clock Cycle used 357,629

I/O 48
AES 717
Reconfiguration 356,864

Throughput (no reconfig delay) 16.121 Mbps

of 16 Mbps is achieved. These figures compared well
to other works [4, 5, 6, 10, 11, 12].

5. Conclusion
This paper presented a dynamic reconfigurable

AES encryption circuit which is suitable for a limited
resource FPGA. The idea of dynamic reconfiguration
can be adapted to reduce the resource used in very
large circuit, but the speed of dynamic reconfigurable
circuit is slowed by the reconfiguration process.
Presently, the speed of configuration process is
limited by the amount of configuration program bit
and the configuration method. In this paper,

SelectMAP, the fastest configuration method is used,
and the reconfigure data is minimized by performing
reconfiguration on only 4 columns of CLB which is
the minimum number for partially reconfiguration of
Spartan-3 FPGA device. In the future, if a faster
dynamic reconfigurable FPGA device is produced,
the performance of a dynamic reconfigurable circuit
will be better than present.

This paper did not present a dynamic
reconfigurable AES decryption circuit, but the
decryption circuit can be implemented easily by a
little modification to Control Unit and adding two
reconfigurable modules to do InverseSubBytes and
InverseMixColumns transformations.

6. References
[1] J. Daemon and V. Rijnmen, The design of Rijndael:

AES-The Advanced Encryption Standard, New York,
Sringer-Verlag, 2002.

[2] National Institute of Standards and Technology
(NIST), Advanced Encryption Standard (AES),
Federal Information Processing Standards (FIPS)
Publication 197, 2001.

[3] National Institute of Standards and Technology
(NIST), Data Encryption Standard (DES), Federal
Information Processing Standards (FIPS) Publication
46-3, 1999.

[4] P. Chodowiec and K. Gaj, “Very Compact FPGA
Implementation of the AES Algorithm”,
Cryptographic Hardware and Embedded Systems
2003 (CHES 2003), LNCS vol. 2779, pp. 319-333,
Springer-Verlag, Oct. 2003.

[5] T. Good and M. Benaissa, “AES on FPGA from the
Fastest to the Smallest”, Cryptographic Hardware and
Embedded Systems 2005 (CHES 2005), LNCS vol.
3659, pp. 427-440, Springer-Verlag, 2005.

[6] Hodjat and I. Verbauwhede, “Area-Throughput Trade-
offs for Fully Pipelined 30 to 70 Gbits/s AES
Processors”, IEEE Transactions on Computer, vol. 55,
pp. 366-372, Apr. 2006.

[7] P. Lysaght, B. Brodget, J. Mason, J. Young, and B.
Bridgford, “Invited Paper: Enhanced Architectures,
Design Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAs”, International
Conference on Field Programmable Logic and
Applications, 2006

[8] Xilinx Inc., Spartan-3 Generation Configuration User
Guide, v1.2, May. 2007.

[9] Guy Gogniat, Tilman Wolf, Wayne Burleson,
“Reconfigurable Security Primitive for Embedded
Systems”, SOCC 2005.

[10] Ming-Haw Jing, Zih-Heng Chen, Jian-Hong Chen,
and Yan-Haw Chen, “Reconfigurable system for high-
speed and diversified AES using FPGA”,
Microprocessors and Microsystems Volume 31, Issue
2, 5 March 2007, Pages 94-102.

[11] O.Perez, Y.Berviller,C.Tanougast, and S.Weber, “The
Use of Runtime Reconfiguration on FPGA Circuits to
Increase the Performance of the AES Algorithm
Implementation”, Journal of Universal Computer
Science, vol. 13, no. 3 (2007), 349-362.

