S3.0 multicore processor

S3.0 is extended from S21. It has three-address instruction set. A general format of an instruction
(register to register operations) is:

op rl r2 r3 means R[rl] = R[r2] op R[r3]

To pass values between memory and registers, load/store instructions are used. Load means transfer
memory to register. Store means transfer register to memory. There are three addressing modes:
absolute, index and displacement.

1d rl ads R[rl] = M[ads] absolute

1d rl +r2 r3 R[rl] = M[R[r2]+R[r3]] index

1d rl @d r2 R[rl] = M[d + R[r2]] displacement
st rl ads M[ads] = R[rl] absolute

st rl 4r2 r3 M[R[r2]+R[r3]] = R[rl] index

st rl Qd r2 M[d + R[r2]] = R[rl] displacement

In assembly language, these addressing modes are written using the convention op dest <- source.

Instruction type

arithmetic: add sub mul div mod

logic: and or xor eq ne 1lt le gt ge shl shr
control: jmp jt jf jal ret

data: 1d st push pop mov

Instruction meaning

false ==

true =0

op rl r2 r3 R[rl] = R[r2] op RI[r3]
op rl r2 #n R[rl] = R[r2] op n
Data

d is 17-bit sign extended
m is 22-bit sign extended

1d rl ads R[rl] M[ads] absolute

1d rl +r2 r3 R[rl] = M[R[r2]+R[xr3]] index

1d rl @d r2 R[rl] = M[d + R[r2]] displacement
st rl ads M[ads] = R[rl] absolute

st rl +r2 r3 M[R[r2]+R[r3]] = R[rl] index

st rl @d r2 M[d + R[r2]] = R[rl] displacement



mov rl #m
mov rl r2

Control

Jjmp ads

Jjt rl ads
Jf rl ads
jal rl ads
ret rl

Interrupt

int #n
reti
wfi

Arithmetic

R[rl] =m

R[rl] = R[r2]

pc = ads

if R[rl] !=
if R[rl] ==
R[rl] = PC;
PC = R[rl]

two-complement integer arithmetic
n is 17-bit sign extended

add rl r2 r3
add rl r2 #n
sub rl r2
mul rl r2
div rl r2
mod rl r2

Logic (bitwise)

KRB
[ R
[T

PR VR VR R

ﬁWﬁjﬁﬂﬁrﬁrﬁ
K
s
i
Il

n is 17-bit sign extended

and rl r2 r3
and rl r2 #n
or rl r2 r3

or rl r2 #n

xor rl r2 r3
xor rl r2 #n
eq rl r2 r3

eq rl r2 #n

ne

1t

le

gt

ge ...

shl rl r2 r3
shl rl r2 #n
shr rl r2 r3
shr rl r2 #n

PP Y R v VRS B VRS Y
K
=
Il

PP S R v VRS B VRS Y

KR

e

=0
I

R
N
—

o0 .+ |

(@]

rc
pc

o

stop

H
N
+ +

r2] bi
r2] bi
r2] bi
r2] bi
r2] bi
r2] bi
= R[r3]

r2] <<
r2] <<
r2] >>
r2] >>

move constant to register
move value between registers

= ads Jump if rl is true

= ads Jump if rl is false

ads Jjump and link
return

M[1000+4*n] sw interrupt
return from int
wait for int

R[r3]

n

R[r3]

R[r3]

R[r3] integer division
R[r3] modulo

t-and R[r3]
t-and n
t-or R[r3]
t-or n
t-xor R[r3]
t-xor n

n

R[r3]

o]

R[r3]



Stack operation

To facilitate passing the parameters to a subroutine and also to save state (link register) forrecursive
call, two stack operations are defined: push, pop.

push rl r2 Rirl]++; M[R[rl]] = R[r2] push r2, rl as stack pointer
pop rl r2 R[r2] = M[R[rl]]; R[rl]-- pop to r2, rl as stack pointer
pushm rl push multiple R[0]..R[15], rl as stack pointer

popm rl pop multiple R[0]..R[15], rl as stack pointer

Multicore support

cid rl return core number to R[rl]

intx #c generate int0 to core #c

sync global (all-core) synchronisation
Pseudo

Pseudo instructions are unlike other instructions, they are used mainly to control the simulator and to
perform input/output. "trap" instruction have two arguments. The second argument is the trap number
designated the operation.

trap rl #n special instruction, n is in r2-field.
trap rl #0 stop simulation

trap rl1 #1 print integer in R[rl]

trap r2 #2 print character in R[r2]

Instruction format

L-format op:5 rl:5 ads:22

D-format op:5r1:5 r2:5 disp:17

X-format op:5 rl:5 r2:5 r3:5 xop:12

(ads 22-bit, disp 17-bit sign extended)

Instructions are fixed length at 32 bits. There are 32 registers. The address space is 32-bit. Access to
memory is always on word boundary (no byte-access). Absolute address (L-format) is 22-bit or the first

4M words. Index and indirect access can reach the whole 32-bit address space. Immediate value (D-
format) is 17-bit. Itis sign extended. The jump instructions (jmp, jt, jf) have 22-bit address.

ISA and opcode encoding

opcode format

0 L nop no operation
1 L 1d rl ads (ads 22-bit)
2 D 1d rl @d r2 (d 17-bit sign extended)
3 L st rl ads (ads 22-bit)



4 D st rl @d r2
5 L mov r #m
6 L Jjmp ads
7 L jal rl ads
8 L jt rl ads
9 L Jf rl ads
10 D add rl r2 #n
11 D sub rl r2 #n
12 D mul rl r2 #n
13 D div rl r2 #n
14 D and rl r2 #n
15 D or rl r2 #n
16 D xXor rl r2 #n
17 D eq rl r2 #n
18 D ne rl r2 #n
19 D 1t rl r2 #n
20 D le rl r2 #n
21 D gt rl r2 #n
22 D ge rl r2 #n
23 D shl rl r2 #n
24 D shr rl r2 #n
D

25 mod rl r2 #n
26..30 undefined

31 xop - X
XOPp

0 X add rl r2 r3
1 X sub rl r2 r3
2 X mul rl r2 r3
3 X div rl r2 r3
4 X and rl r2 r3
5 X or rl r2 r3
6 X xor rl r2 r3
7 X eq rl r2 r3
8 X ne rl r2 r3
9 X 1t rl r2 r3
10 X le rl r2 r3
11 X gt rl r2 r3
12 X ge rl r2 r3
13 X shl rl r2 r3
14 X shr rl r2 r3
15 X mod rl r2 r3
16 x mov rl r2

17 X 1d rl 4+r2 r3
18 X st rl +r2 r3
19 X ret rl

20 X trap rl #n
21 X push rl r2
22 X pop rl r2

23 X not rl r2

24 X int #n

25 X reti

26 X pushm rl

27 X popm rl

28 X intx #n

29 X wfi

30 X cid rl

(d 17-bit sign extended)
(m 22-bit sign extended)

(n 17-bit sign extended)

use n at rl n = 0..31
use rl as stack pointer
use rl as stack pointer

sw interrupt 0..3
use rl as stack pointer

use rl as stack pointer
use n at rl, n = 0..31



31 X sync

32..4095 undefined
when a field is not used, it is filled with 0.

last update 8 Mar 2017



