
Asymptotic Notation

Running time of an algorithm, order of growth
Worst case
Running time of an algorith increases with the size of the input in the limit as the size
of the input increases without bound.

Big-theta notation

g(n) is an asymptotically tight bound of f(n)

Example

n >= 1, c2 >= 1/2
n >= 7, c1 <= 1/14

choose c1 = 1/14, c2 = ½, n0 = 7.

O-notation
Asymptotic upper bound

f(n) = O(g(n)) some constant multiple of g(n) is an asymptotic upper bound of f(n),
no claim about how tight an upper bound is.

Example
The running time is O(n2) means there is a function f(n) that is O(n2) such that for
any value of n, no matter what particular input of size n is chosen, the running time of
that input is bounded from above by the value f(n).

Big-Omega notation

Asymptotic lowerbound

Theorem

When we say that the running time (no modifier) of an algorithm is Ω(g(n)), we
mean that no matter what particular input of size n is chosen for each value of n,
the running time on that input is at least a constant times g(n), for sufficiently
large n

Interpretation

not specifying all lower-terms exactly

“No matter how the anonymous functions are chosen on the left of the equal sign,
there is a way to choose the anonymous functions on the right of the equal sign to
make the equation valid.”

for any function f (n) ∈ Θ(n), there is some function g(n) ∈Θ (n2)
such that 2n2 + f (n) = g(n) for all n.

In other words, the right-hand side of an equation provides a coarser level of detail
than the left-hand side.

o-notation

w-notation

Properties

analogy to comparison of two real numbers, a, b.

Standard notation

Floor and ceiling,

for any real x

for any integer n

Modular arithmetic

if (a mod n) = (b mod n), we write

a is equivalent to b, modulo n. in other words, a and b have the same remainder when
divided by n. Or n is a divisor of b – a.

Polynomials

Exponentials

For all real constants a and b such that a > 1

we can conclude that

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

when

we have the approximation

Logarithms

for all real a > 0, b > 0, c > 0 and n

where logarithm bases are not 1.

Changing the base of a logarithm from one constant to another only changes the value
of the logarithm by a constant factor, and so we shall often use the notation “lg n”
when we don’t care about constant factors.

polylogarithmic bound

for any constant a > 0. Thus, any positive polynomial function grows faster than
any polylogarithmic function.

Factorials

n >= 0

A weak upper bound on the factorial function is n! ≤ nn, since each of the n
terms in the factorial product is at most n. Stirling’s approximation,

gives a tighter upper and lower bounds.

Function iteration

Iterated logarithm function

reads “log star of n”

The iterated logarithm is a very slowly growing function:

Be sure to distinguish lg(i) n (the logarithm function applied I times in succession,
starting with argument n) from lgi n (the logarithm of n raised to the ith power).

Fibonacci numbers

Homework

Rank the following functions by order of growth

