

MapReduce: Distributed Computing (the Google Way)

Asst. Prof. Krerk Piromsopa, Ph. D. Mobile Application and System Services Research Group (MASS) Department of Computer Engineering, Chulalongkorn Univeristy

<u>krerk.P@Chula.ac.th</u>

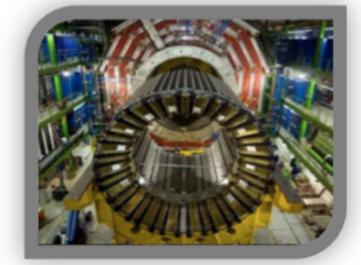
New York Stock Exchange

1 TB trade data per day

Internet Archive www.archive.org

growing by 20 TB per month

Hadron Collider Switzerland



producing 15 PB per year

New York Stock Exchange

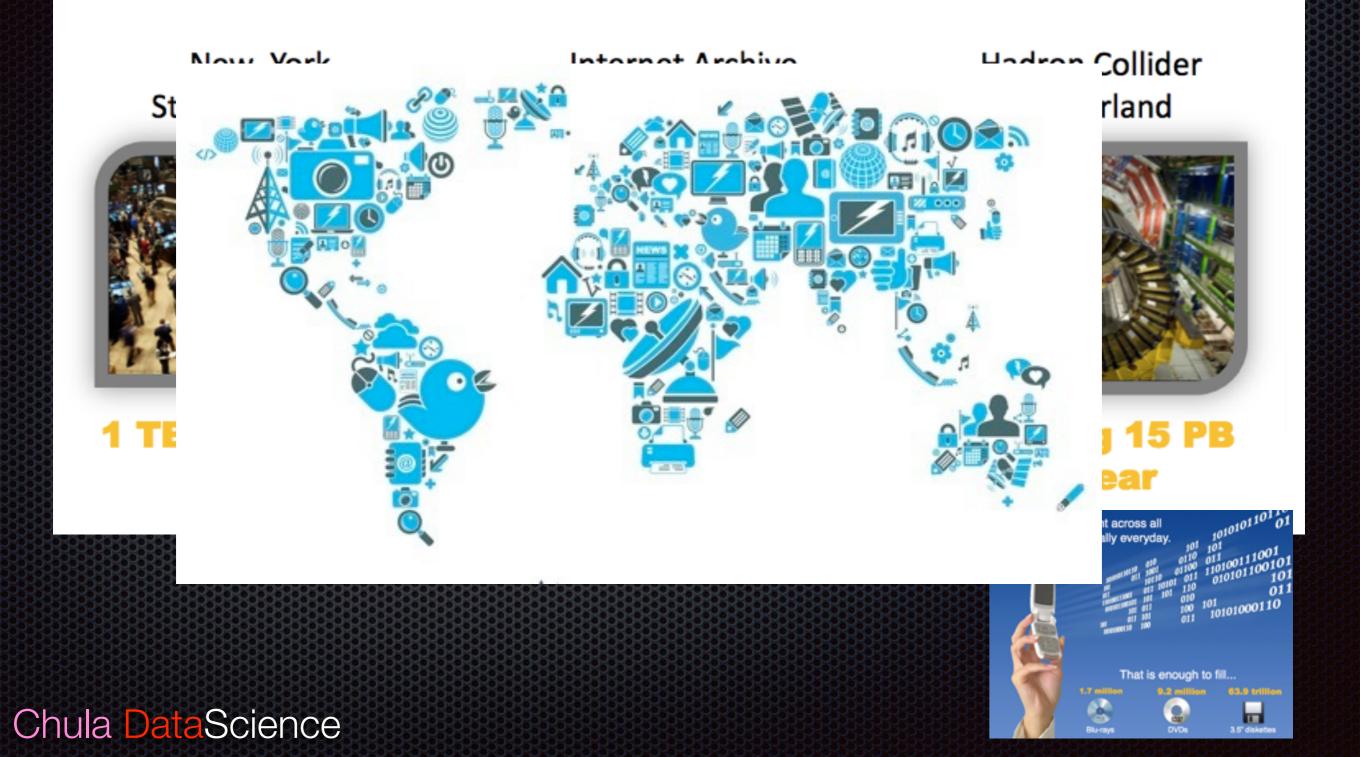
1 TB trade data per day

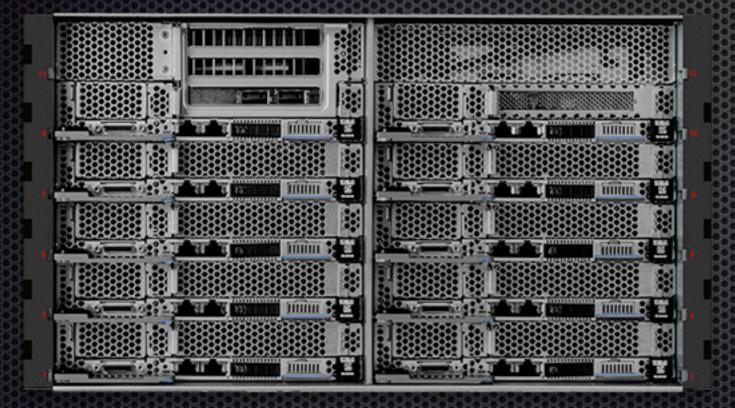
Chula DataScience

Internet Archive www.archive.org

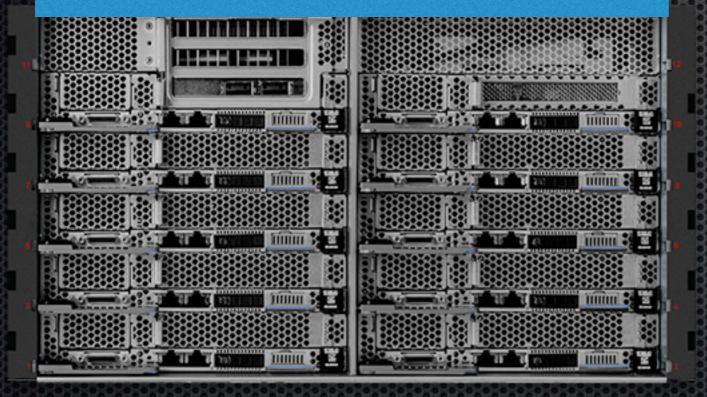
growing by 20 TB per month Hadron Collider Switzerland

producing 15 PB per year





IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb



IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb

IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb

IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb

Intel NUC intel Core i5 (4cores) RAM 16 Gb

IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb

Intel NUC intel Core i5 (4cores) RAM 16 Gb

IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb

Intel NUC intel Core i5 (4cores) RAM 16 Gb

\$700.00 USD

20-30 units

IBM NextScale Server M5 intel XEON (Up to 18 cores) RAM 512Gb

\$14,432.00 USD

Intel NUC intel Core i5 (4cores) RAM 16 Gb

\$700.00 USD

20-30 units

80 cores RAM 320 Gb

Hardware vs. Software

IBM NextScale Server M5

Intel NUC farm

Hardware: ReliableSoftware: easy

Hardware: VulnerableSoftware : ????

Time to Product/Analysis

Time to Product/Analysis

Before

Development : weeks Run: days/month

Time to Product/Analysis

Before

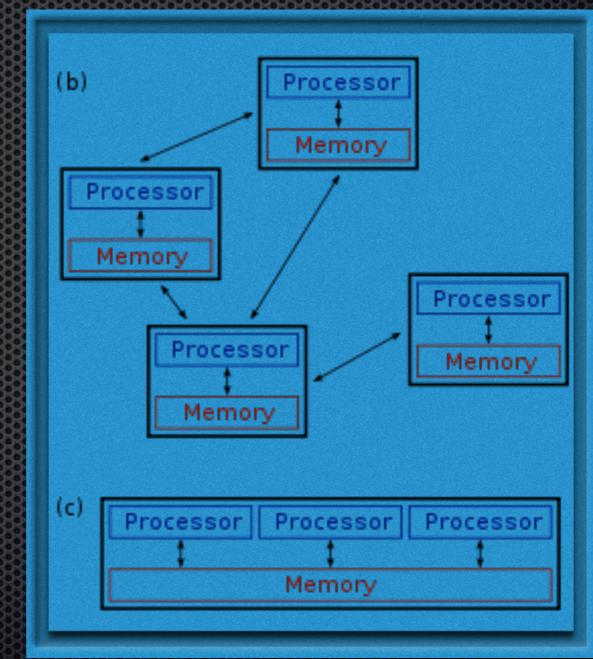
Development : weeks Run: days/month Today

Development : few days Run: minutes

Why MapReduce? Why not Grid/Cluster?

Distributed vs. Parallel Computing

- Parallel Computing: everything in memory
- Distributed Computing: beyond one computer



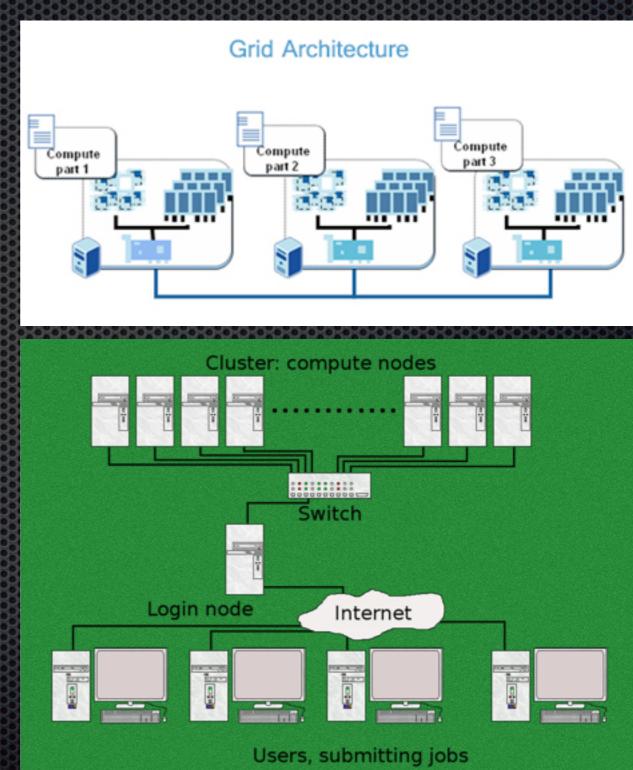
Chula DataScience

A picture from wikipedia

Traditional Distributed Systems

Grid

Clusters

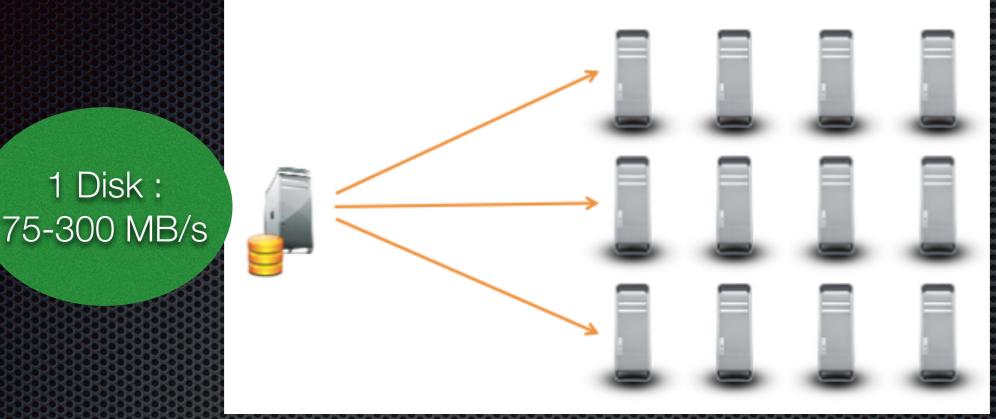


Where is the problem?



- Traditional Grid/Cluster good for distributed workload
 - One storage (SAN/NAS), multiple machines
 - small data, long process

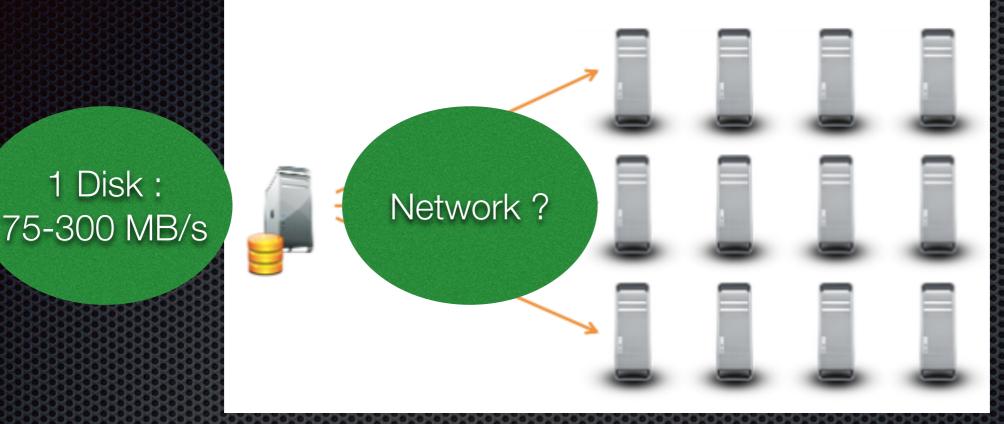
Where is the problem?



Traditional Grid/Cluster good for distributed workload

- One storage (SAN/NAS), multiple machines
- small data, long process

Where is the problem?



Traditional Grid/Cluster good for distributed workload

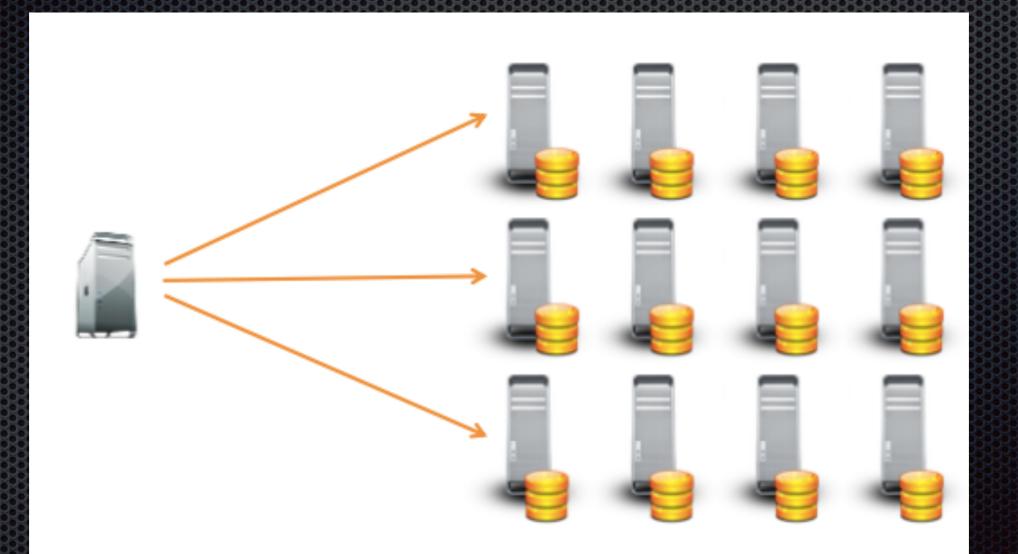
- One storage (SAN/NAS), multiple machines
- small data, long process

■ 200 Gb

more than 30 minutes to just read sequentially

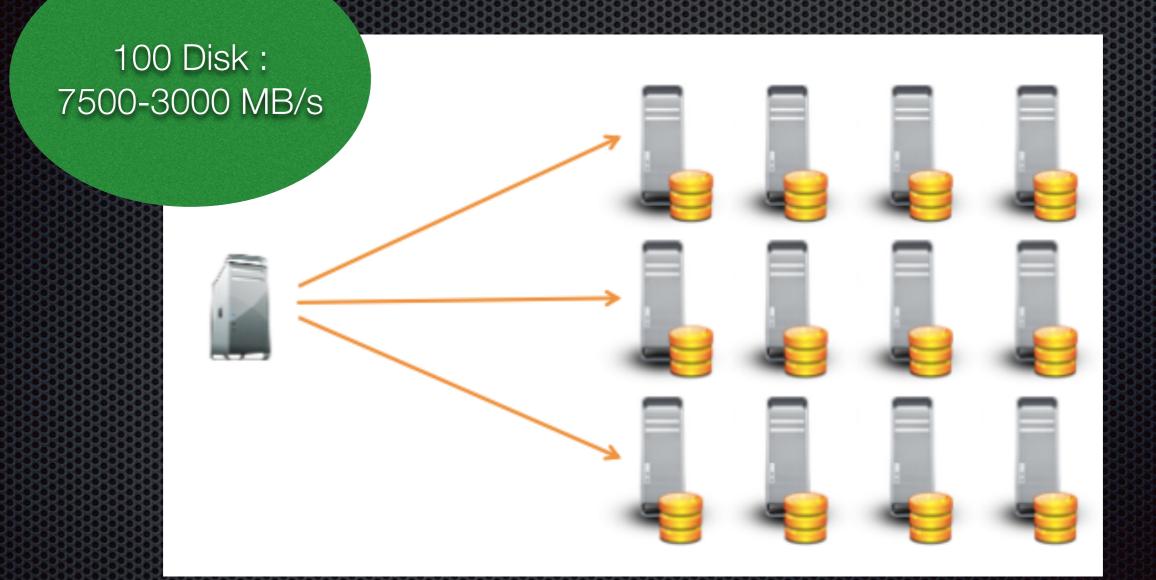
more than 5 hours to just transfer over fast ethernet

MapReduce?



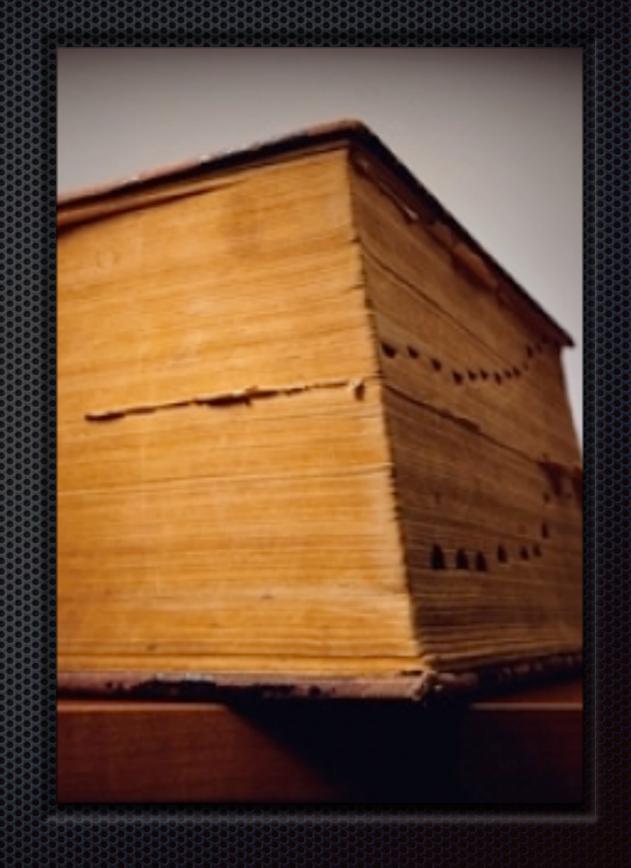
Let's distribute the data/storage.

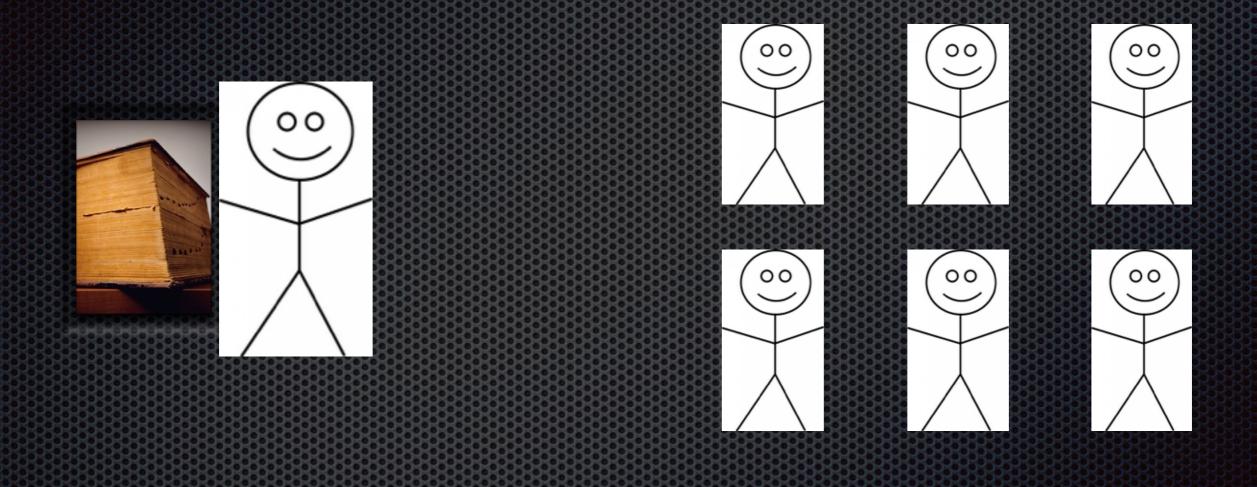
MapReduce?



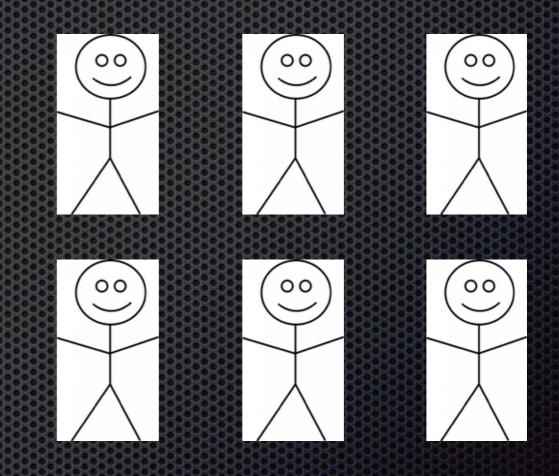
Let's distribute the data/storage.

Example (Word frequency count) Find frequency of each word in this big book?

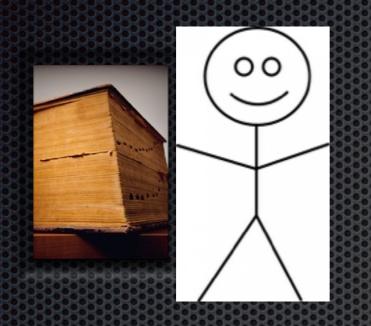


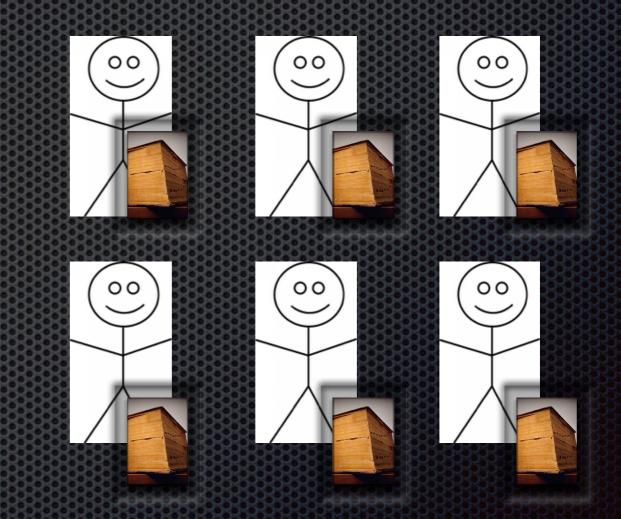


Here is the data. Please count.

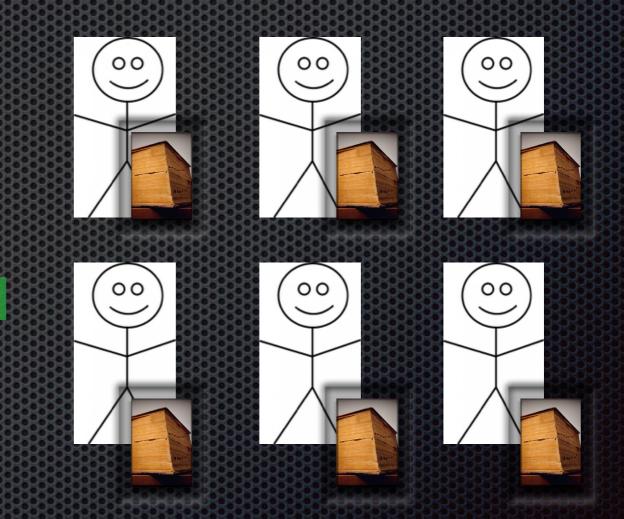


Here is the data. Please count.

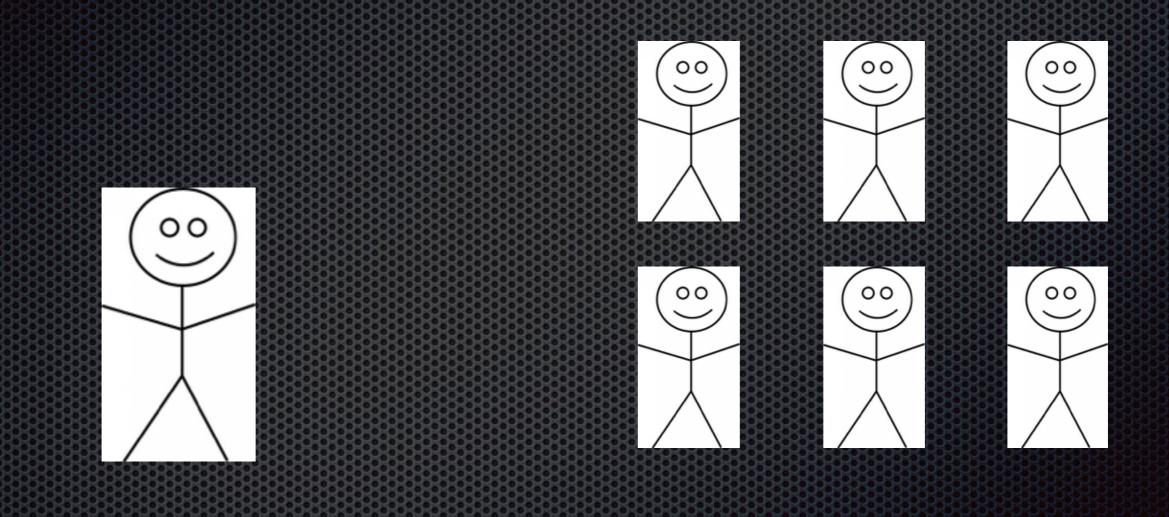




Here is the data. Please count.

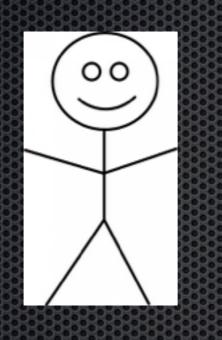


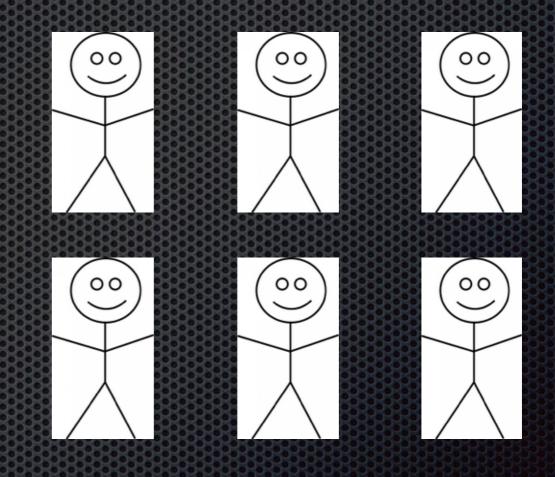
Word freq.: MapReduce



Word freq.: MapReduce

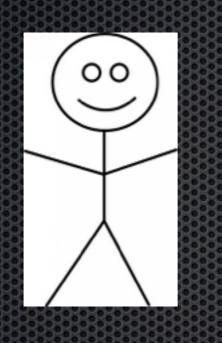
Store a part of data.

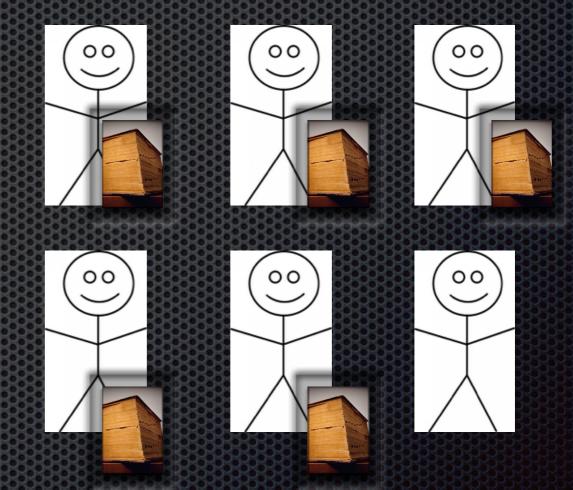




Word freq.: MapReduce

Store a part of data.

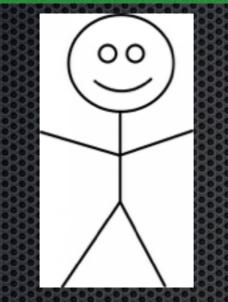


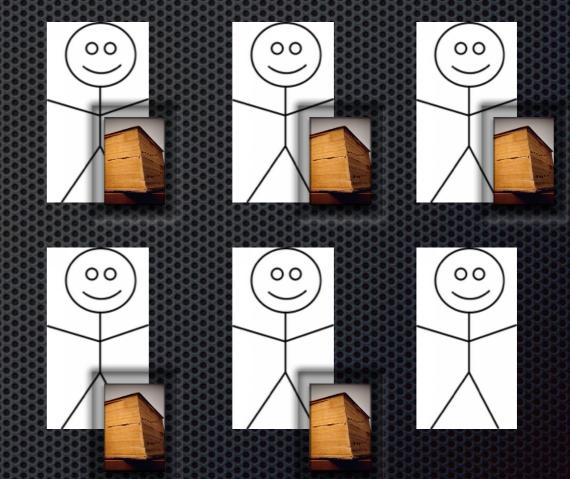


Word freq.: MapReduce

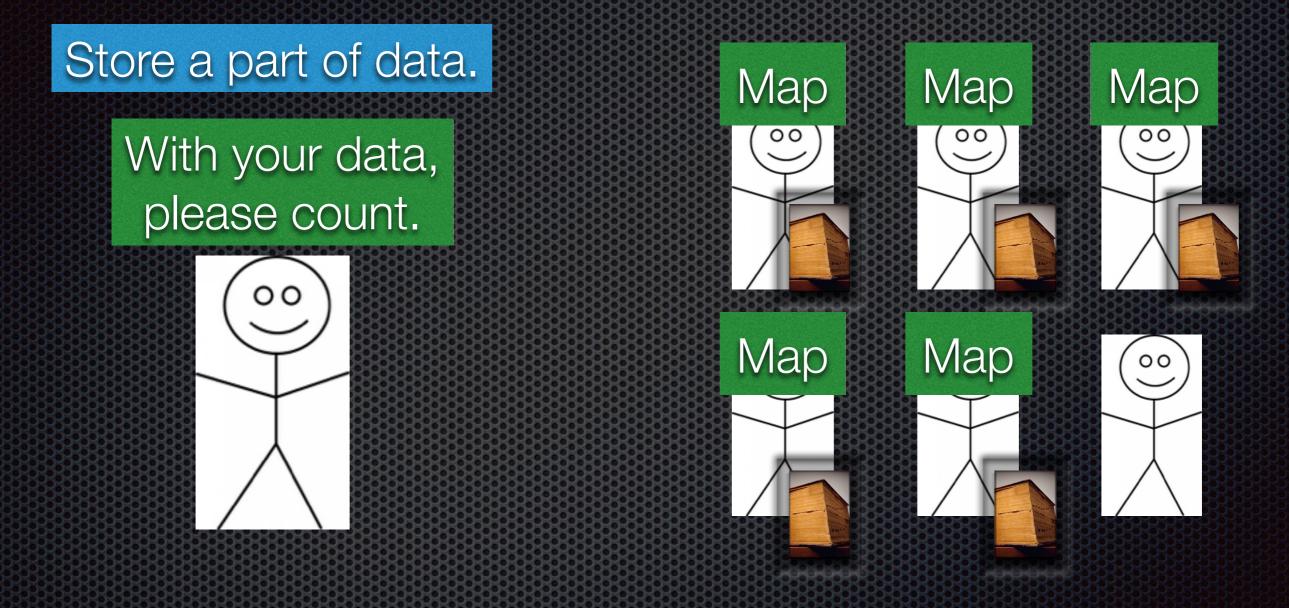
Store a part of data.

With your data, please count.

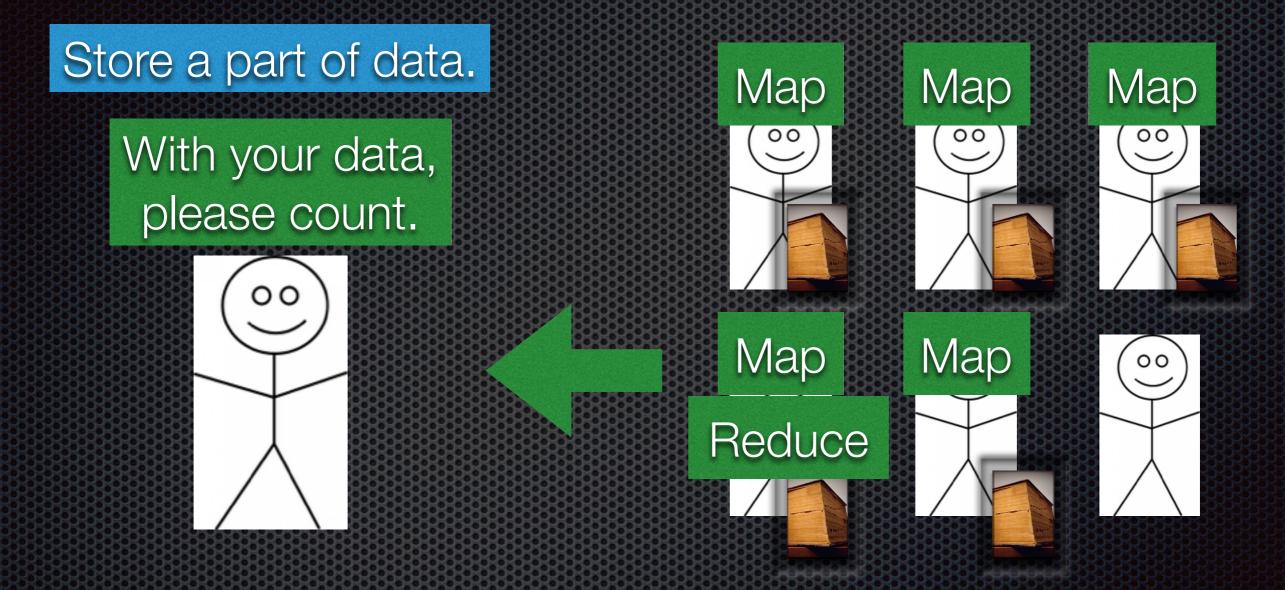




Word freq.: MapReduce



Word freq.: MapReduce



Fundamental of MapReduce

- Distributed storage
- Do Map function with local data
 - emit [key, value] pairs
- Pairs with same key feed to same Reduce function
 - emit final value

Fundamental of MapReduce

Fast

- Distributed storage
- Do Map function with local data
 - emit [key, value] pairs
- Pairs with same key feed to same Reduce function
 - emit final value

Fundamental of MapReduce

- Distributed storage
- Do Map function with local data
 - emit [key, value] pairs

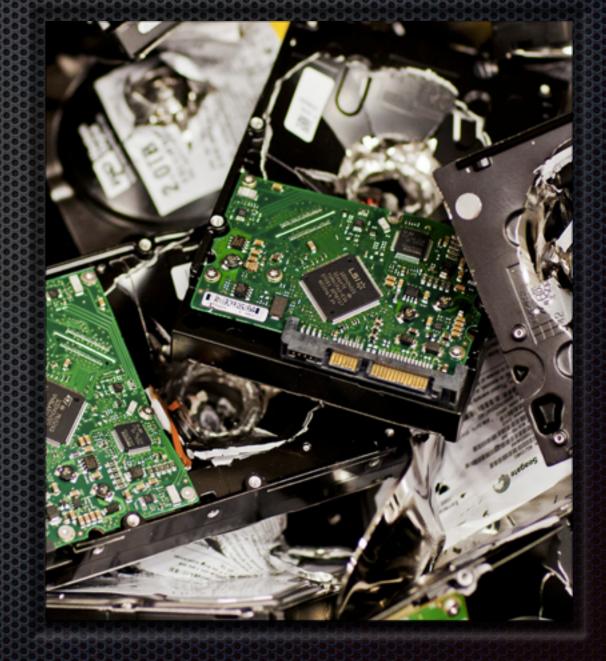
- Pairs with same key feed to same Reduce function
 - emit final value

Disks

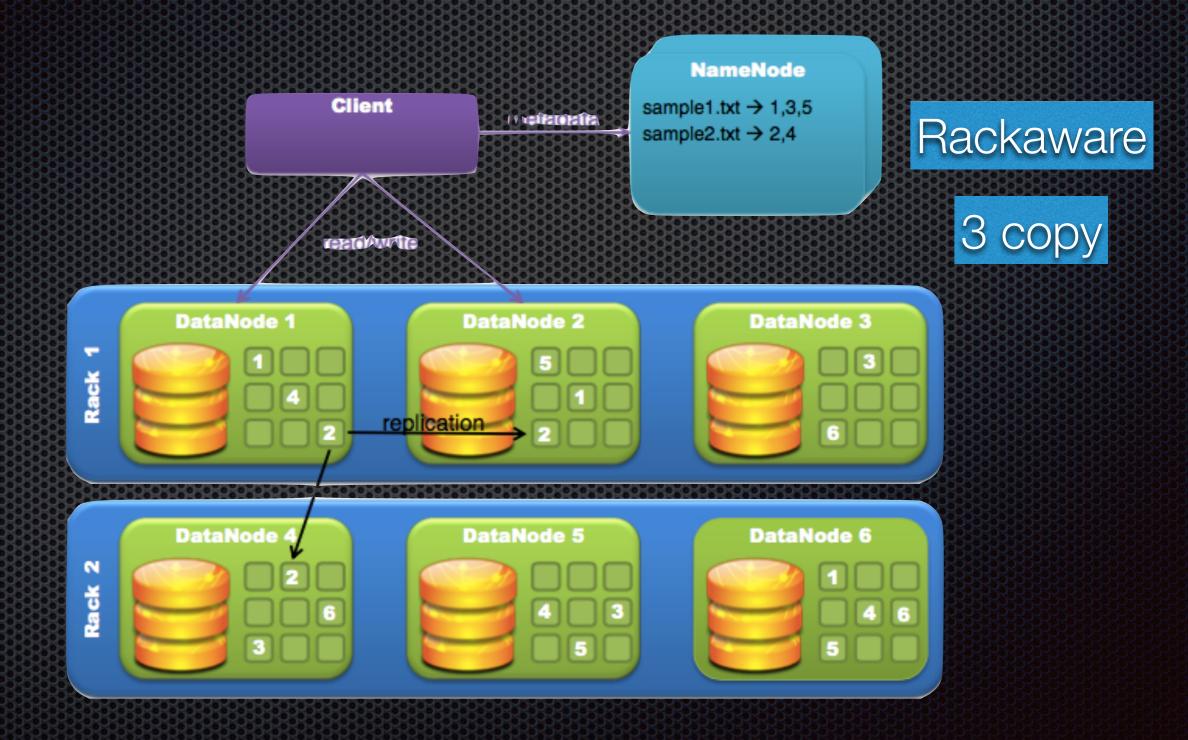
MTBF is 1,200,00 hours

 With 10,000 disks,
 one will crash every 5 days

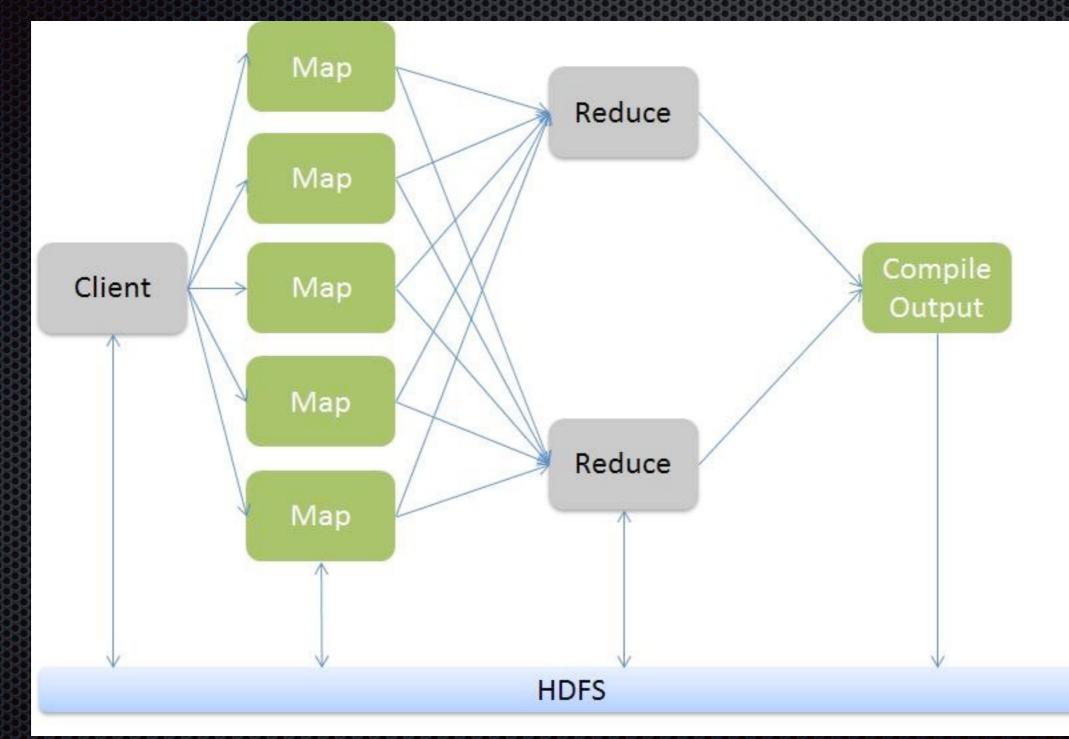
Source: google



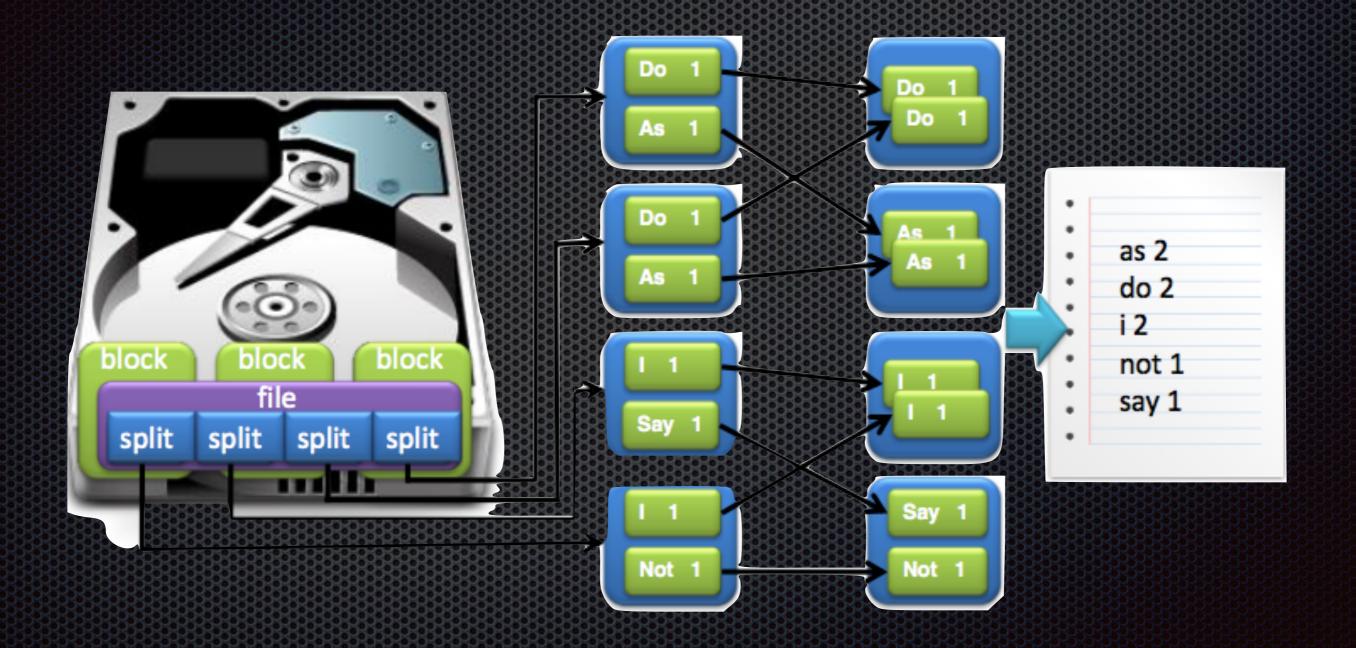
Hadoop HDFS



How MapReduce work?

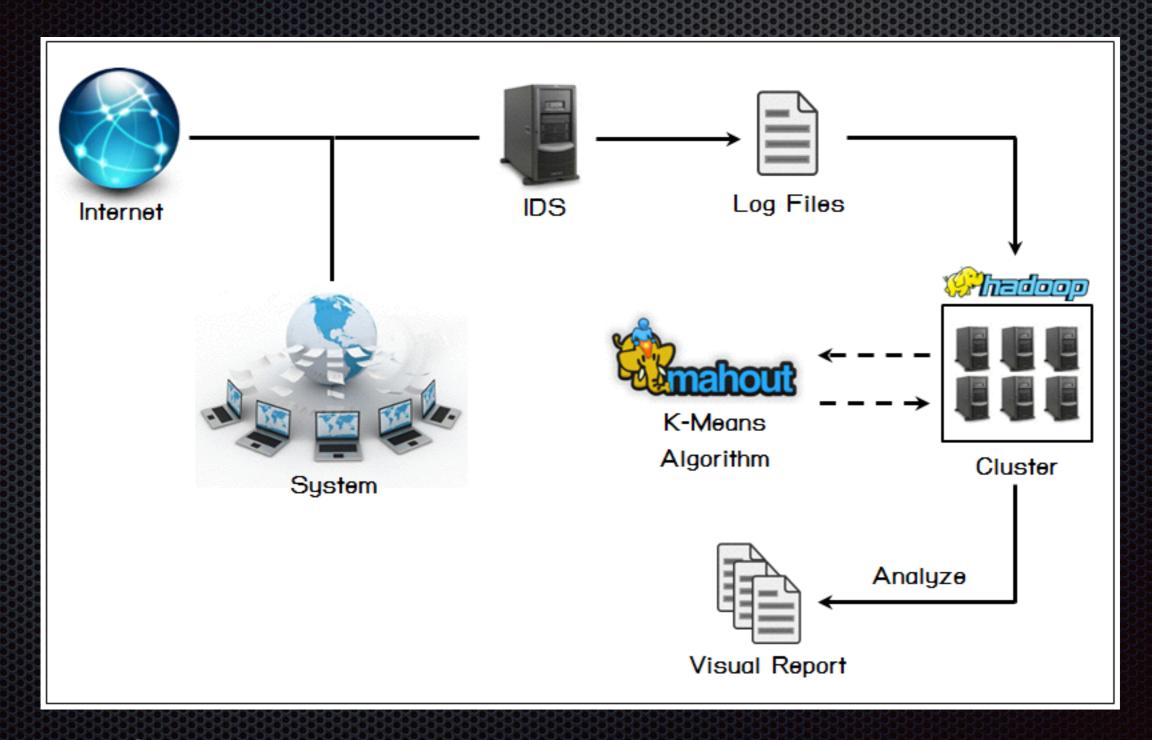


Hadoop Architecture

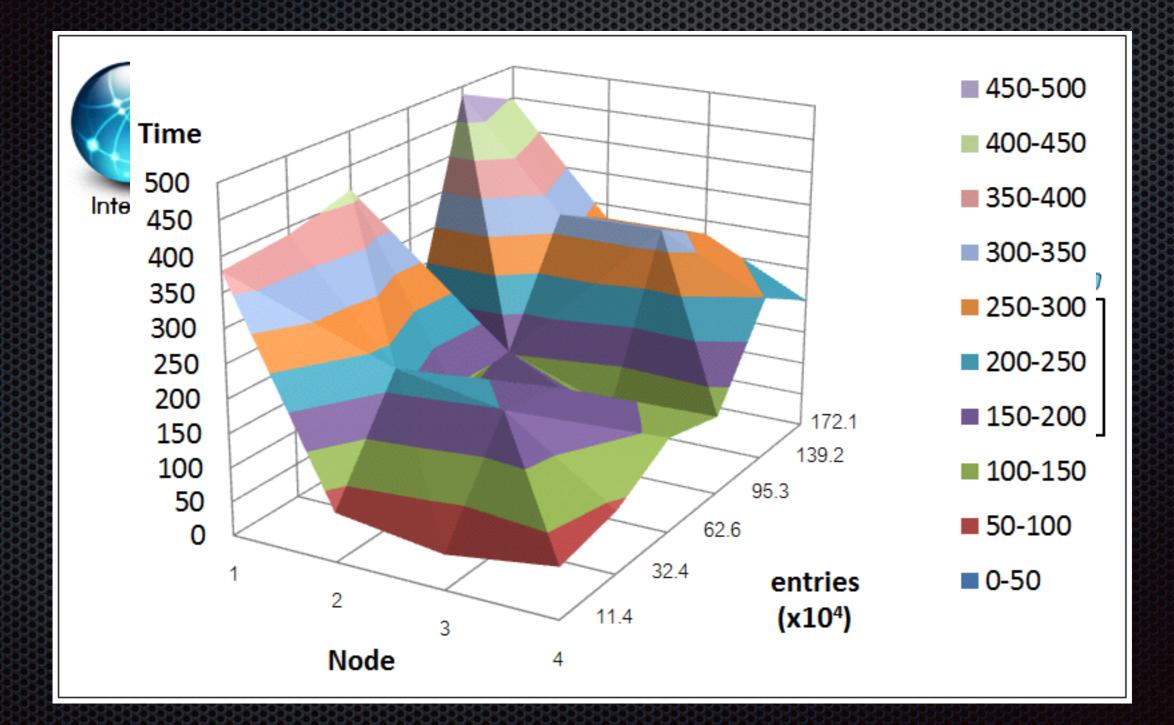


MapReduce in action

Large-Scale log analysis



Large-Scale log analysis



See demo

Personid	Gender	Salary	Name	Grade
A0001	M	1,000	A	A
A0002		2,000		В
A0003	M	3,000	С	A

Perso	Gend	Salary	Name	Grade
A000	Μ	1,000	A	A
A000		2,000		В
A000	M	3,000	С	A

Perso	Gend	Salary	Name	Grade
A000	M	1,000	A	A
A000		2,000		В
A000	Μ	3,000	С	A

function Map(doc) {
 emit(Grade,1);
 }

Perso	Gend	Salary	Name	Grade
A000	M	1,000	A	A
A000		2,000		В
A000	Μ	3,000	С	A

function Map(doc) {
 emit(Grade,1);
 }

function Reduce(key, values)
{
 return sum(values);

Perso	Gend	Salary	Name	Grade
A000	M	1,000	A	A
A000		2,000		В
A000	Μ	3,000	С	A

function Map(doc) {
 emit(Grade,1);
 }

Grade	Count
A	2

1

function Reduce(key, values)

B

return sum(values);

"MapReduce is just A Major Step Backwards!!!"

– Dewitt and StoneBraker in January 17, 2008

Let's debate!

Major Step Backwards!!!

- No schema, type (Garbage)
- No standard access language (e.g. SQL)
- No index, but brute force
- No transaction
- No integrity (e.g. foreign key)

Let's fight back!

MapReduce is not DBMS

- No schema, type (Garbage)
- No standard access language (e.g. SQL)
- No index, but brute force
- No transaction
- No integrity (e.g. foreign key)

MapReduce is not DBMS

MapReduce is a big forward in.

- Scalability (Scale out)
- Reliable software model for unreliable hardware

What have we learned?

- MapReduce is a software solution for:
 - processing software on unreliable hardware
 - distributing I/O (data as well as workload)
- MapReduce is not DBMS.
- Think in Map function and Reduce function

RDBMS vs. MapReduce

	RDBMS	MapReduce	
Data size	gigabytes	petabytes batch	
Access	interactive and batch		
Updates	read and write many times	write once read many times	
Structure	static schema	dynamic schema	
Integrity	high	low	
Scaling	nonlinear	linear	

RDBMS vs. MapReduce

Use the right tool!

Act

Up

MapReduce is a screwdriver.

good for:

unstructured data

- data intensive computation
- batch operations
- scale horizontal

Str

Int

Sca

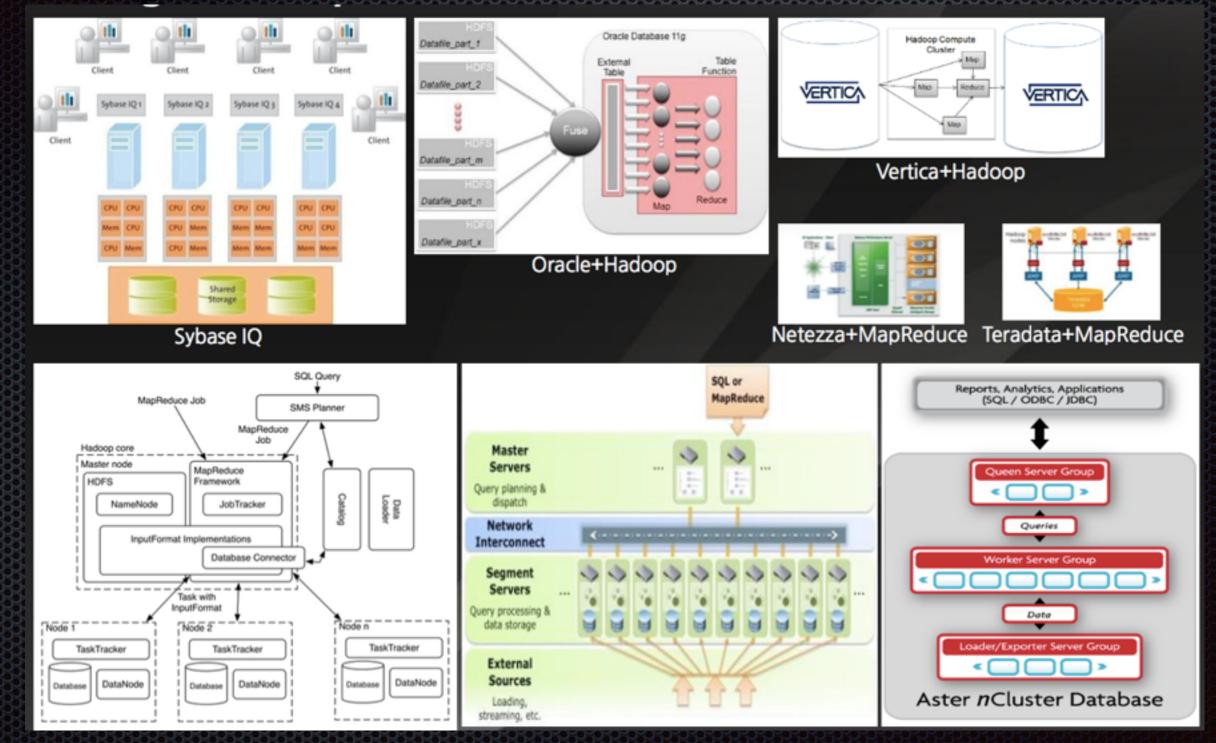
good for:

- structured data
- transactions
- interactive requests
- scale vertically

Databases are hammers.

Why don't use both?

Why don't use both?



Hadoop is good for

Large-scale data analysis

Search engines

¤ etc..

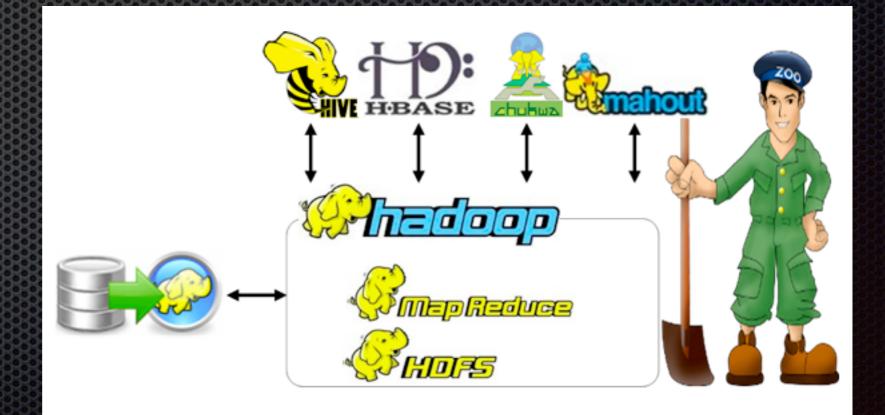
Hadoop is bad for

- Pi estimation
- Dependency calculation (Recurrent relation)
- DBMS replacement / transaction

Easy ways to MapReduce

Use high-level analysis tools

- Hive (SQL style)
- Gnu R
- Spark
- **H**20



Thank you Question?