Nested Quantifiers

 Readings: Rosen Section 1.4

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Nested Quantifiers

Statement	is TRUE when
$orall x \forall y P(x,y)$ $orall y \forall x P(x,y)$	P(x,y) is true for every pair of x,y
∀x∃y P(x,y)	For every x, there is a y for which P(x,y) is true.
∃x∀y P(x,y)	There is an x for which P(x,y) is true for every y.
∃x∃y P(x,y) ∃y∃x P(x,y)	There is a pair x,y for which P(x,y) is true.

Nested Quantifiers

- · Quantifiers that occur within the scope of other quantifiers.
- E.g.: $\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0))$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Negating Nested Quantifiers

- Successively applying the rules for negating statements involving a single quntifier.
- Example (Rosen p.48):

$$\neg \forall x \exists y (xy = 1) \equiv \exists x \neg \exists y (xy = 1) \\ \equiv \exists x \forall y \neg (xy = 1) \\ \equiv \exists x \forall y (xy \neq 1) \end{cases}$$

Relations

• Rosen: Section 7.1

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Atiwong Suchato

Faculty of Engineering, Chulalongkorn University

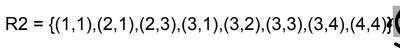
Properties of Relations

- R on the set A is *reflexive* $\leftrightarrow \forall a ((a,a) \in R)$

Example: Consider relations on {1,2,3,4}

R must contain (1,1),(2,2),(3,3),(4,4)

 $\mathsf{R1} = \{(1,1), (1,2), (1,3), (2,2), (3,3), (4,1), (4,4)\}$



Relations

- A (binary) relation form A to B is a subset of AxB
- A relation on the set A is a relation from A to A
- A function from A to B is a relation from A to B
- Examples:

 $R_1 = \{(1,1), (1,2), (2,1), (2,3)\}$ R₂ = {(a,b) | a = b or a = -b} a and b are integers

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Symmetric and Antisymmetric

• R on a set A is symmetric

 $\leftrightarrow \forall a \forall b((a,b) \in \mathsf{R} \rightarrow (b,a) \in \mathsf{R})$

- R on a set A is antisymmetric
 ↔ ∀a∀b(((a,b)∈R ∧ (b,a)∈R) → (a=b))
- These two are NOT opposite.

Symmetric and Antisymmetric **Transitive Relations** • Symmetric $\leftrightarrow \forall a \forall b((a,b) \in R \rightarrow (b,a) \in R)$ R on a set A is transitive • Antisym. $\leftrightarrow \forall a \forall b(((a,b) \in \mathbb{R} \land (b,a) \in \mathbb{R}) \rightarrow (a=b))$ $\leftrightarrow \forall a \forall b \forall c(((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$ Example: Antisym Example: Sym $R_1 = \{(1,1), (1,2), (2,1)\}$ $R_1 = \{(1,2), (2,3), (1,3), (1,4)\}$ $R_2 = \{(1,1), (1,2)\}$ $R_2 = \{(1,1), (1,2), (1,3), (2,4)\}$ $R_3 = \{(a,b) \mid a = b\}$ (on Int.) $R_3 = \{(a,b) \mid a < b\}$ $R_4 = \{(2,1)\}$ $R_5 = \{(a,b) \mid a + b \le 3\}$ (on Int.) Atiwong Suchato Atiwong Suchato Faculty of Engineering, Chulalongkorn University Faculty of Engineering, Chulalongkorn University **Composite Relations Combining Relations** Since a relation is a set, we can apply all set R is a relation from A to B operators to relations. S is a relation from B to C Example (Rosen p.477) • SoR = $\{(a,c) | a \in A, c \in C, and there exists b \in B$ $R_1 = \{(1,1), (2,2), (3,3)\},\$ such that $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{S}$ $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$ $R_1 \cap R_2 = \{(1,1)\}$ $R_1 - R_2 = \{(2,2), (3,3)\}$

Composite Relations

• Example (Rosen p.478):

R is a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with R= $\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with S= $\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$.

What is the composite of R and S?

 $SoR = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Composite Relations

 $R^{n+1} = R^n \circ R$ and $R^1 = R$

 R^n is transitive $\leftrightarrow R^n \subseteq R$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

