Nested Quantifiers

- Readings:

Rosen Section 1.4

Nested Quantifiers

- Quantifiers that occur within the scope of other quantifiers.
- E.g.:
$\forall x \forall y((x>0) \wedge(y<0) \rightarrow(x y<0))$

Nested Quantifiers

Statement	\ldots is TRUE when
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	$\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true for every pair of x, y
$\forall \mathrm{x} \exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$	For every x, there is a y for which $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true.
$\exists \mathrm{x} \forall \mathrm{yP} \mathrm{P}(\mathrm{x}, \mathrm{y})$	There is an x for which $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true for every y.
$\exists \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})$ $\exists \mathrm{y} \exists \mathrm{x} P(x, y)$	There is a pair x, y for which $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true.

Negating Nested Quantifiers

- Successively applying the rules for negating statements involving a single quntifier.
- Example (Rosen p.48):
$\neg \forall x \exists y(x y=1) \equiv \exists x \neg \exists y(x y=1)$

$$
\begin{aligned}
& \equiv \exists x \forall y \neg(x y=1) \\
& \equiv \exists x \forall y \quad(x y \neq 1)
\end{aligned}
$$

Relations

- Rosen: Section 7.1

Relations

- A (binary) relation form A to B is a subset of $A x B$
- A relation on the set A is a relation from A to A
- A function from A to B is a relation from A to B
- Examples:

$$
\begin{gathered}
\mathrm{R}_{1}=\{(1,1),(1,2),(2,1),(2,3)\} \\
\mathrm{R}_{2}=\{(\mathrm{a}, \mathrm{~b}) \mid \mathrm{a}=\mathrm{b} \text { or } \mathrm{a}=-\mathrm{b}\} \\
\mathrm{a} \text { and } \mathrm{b} \text { are integers }
\end{gathered}
$$

Symmetric and Antisymmetric

- R on a set A is symmetric

$$
\leftrightarrow \forall \mathrm{a} \forall \mathrm{~b}((\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \rightarrow(\mathrm{~b}, \mathrm{a}) \in \mathrm{R})
$$

- R on a set A is antisymmetric

$$
\leftrightarrow \forall a \forall b(((a, b) \in R \wedge(b, a) \in R) \rightarrow(a=b))
$$

- These two are NOT opposite.

Symmetric and Antisymmetric

- Symmetric $\leftrightarrow \forall \mathrm{a} \forall \mathrm{b}((\mathrm{a}, \mathrm{b}) \in \mathrm{R} \rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R})$
- Antisym. $\leftrightarrow \forall \mathrm{a} \forall \mathrm{b}(((\mathrm{a}, \mathrm{b}) \in \mathrm{R} \wedge(\mathrm{b}, \mathrm{a}) \in \mathrm{R}) \rightarrow(\mathrm{a}=\mathrm{b}))$

Example:

```
R
R2}={(1,1),(1,2)
R = {(a,b)| a = b } (on Int.)
R
R}={(a,b)|a+b\leq3} (on Int.
```


Transitive Relations

- R on a set A is transitive
$\leftrightarrow \forall a \forall b \forall c(((a, b) \in R \wedge(b, c) \in R) \rightarrow(a, c) \in R)$
Example:

```
R
R2}={(1,1),(1,2),(1,3),(2,4)
R = {(a,b) | a < b }
```


Combining Relations

- Since a relation is a set, we can apply all set operators to relations.
- Example (Rosen p.477)

$$
\begin{aligned}
& \mathrm{R}_{1}=\{(1,1),(2,2),(3,3)\}, \\
& \mathrm{R}_{2}=\{(1,1),(1,2),(1,3),(1,4)\} \\
& \\
& \mathrm{R}_{1} \cap \mathrm{R}_{2}=\{(1,1)\} \\
& \mathrm{R}_{1}-\mathrm{R}_{2}=\{(2,2),(3,3)\}
\end{aligned}
$$

Composite Relations

- R is a relation from A to B
- S is a relation from B to C
- $\operatorname{SoR}=\{(a, c) \mid a \in A, c \in C$, and there exists $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S\}$

Composite Relations

- Example (Rosen p.478):
R is a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is a relation
from $\{1,2,3,4\}$ to $\{0,1,2\}$ with
$S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$.
What is the composite of R and S ?
SoR $=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$

Composite Relations

```
Rn+1}=\mp@subsup{R}{}{n}\circR\mathrm{ and R1 = R
```

