
Atiwong Suchato

Faculty of Engineering, Chulalongkorn University

    

• Readings:

Rosen Section 1.5
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Lemma

  

Conjecture Theorem

a rule of inference

Lemma

Step 1
Step 2
Step 3

Step n-1

an axiom

a rule of inference

Step n

:
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• Provide justification of the steps used to show 
that a conclusion follows a set of hypotheses.

• Each uses a tautology as its basis.
• E.g.:

The law of detachment or Modus ponens
p
p → q
∴q

(Based on (p∧(p→q)) → q )
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p
q → q

∴ q

Modus ponen

p
q      .

∴ p ∧ q

Conjunction

p  ∧ q
∴ p

Simplification

p      .
∴ p ∨ q

Addition

p ∨ q
¬p ∨ r

∴ q ∨ r

Resolution

p ∨ q
¬p     .

∴ q

Disjunction 
syllogism

p →q 
q →r

∴ q →r

Hypothetical 
syllogism

¬q
p →q

∴ ¬p

Modus tollens
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• Example (Rosen p.57):
If it rains today, we will not have a barbecue today.
If we do not have a barbecue today, we will have it 
tomorrow
Therefore, if it rains today, then we will have a 
barbecue tomorrow.

Which rule of inference is used?
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• Example:
If it floods today, Chula will close.
Chula is not closed today.
Therefore, it did not flood today.

Which rule of inference is used?
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• An argument is called valid if whenever all the 
hypotheses are true, the conclusion is also true.

(p1 ∧ p2 ∧ … ∧ pn) → q is true.Showing that 
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• Example (Rosen p.59):
h1: If you send me an email, I will finish writing this program.

h2: If you do not send me an email, I will go to bed early.

h3: If I go to bed early, I will wake up feeling refreshed.

Lead to?: If I do not finish writing program, then I will wake up 
feeling refreshed.
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• Example (Rosen p.60):
Show that (p ∧ q) ∨ r and r→s imply p ∨ s
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P(c) for some element c
∴ ∃xP(x)

Existential Generalization

∃xP(x)
∴ P(c) for some element c

Existential Instantiation

P(c) for an arbitrary c
∴ ∀xP(x)

Universal Generalization

∀xP(x)
∴ P(c)

Universal Instantiation
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• Example (Rosen p.62):
Show that:

A student in this class has not read the book.
Everyone in this class passed the first exam.

imply:
Someone who passed the first exam has not 
read the book.
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Indirect proof
Vacuous proof

Trivial proof

Counterexample

Proof by
Contradiction

Existence
Proof

Proof by
cases

Direct proof
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Direct Proof

Indirect Proof

Vacuous Proof

Trivial Proof

Proof by Contradiction
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Direct Proof

Indirect Proof

Vacuous Proof

Trivial Proof

Proof by Contradiction

Show that if p is true,
q must be true.

p → q  ≡ ¬q → ¬p

Show that if ¬q is 
true, ¬p must be true.
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• Example (Rosen p.64):
Show that “If n is an odd integer, n2 is an odd 
integer”
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• Example (Rosen p.64):
Show that “If n is an integer and n2 is odd, then n
is odd.”
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Direct Proof

Indirect Proof

Vacuous Proof

Trivial Proof

Proof by Contradiction

Show that p is false.
So, p→q is always 
true.

Show that q is true.
So, p→q is always 
true.

Used in Math Induction
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• Example (Rosen p.64):
P(n) = “If n  > 1,then n2  > n”
Show that P(0) is true.

• Example (Rosen p.64):
P(n) = “If a and b are positive integers with a ≥ b, 
then an ≥ bn”
Show that P(0) is true.
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• Proof by Contradiction
– Suppose we want to prove a statement s
– Start by assuming ¬ s is true.
– Show that ¬ s implies a contradiction. (¬ s → F)
– Then, ¬ s must be false (or s must be true).
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• Example:
Show that at least 10 of any 64 days chosen 
must fall on the same day of the week. 
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• Proof by Contradiction
– Start by assuming ¬ (p→q) is true.
– That means p ∧ ¬ q is true. 

(since ¬ (p → q) ≡ ¬ (¬ p ∨ q) ≡ p ∧ ¬ q )
– Show that p ∧ ¬ q is a contradiction
– Then, ¬ (p→q) must be false

(or (p→q) must be true).
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• Example:
Prove that “If n is an integer and n3+5 is odd, 
then n is even”. Using:
(a) an indirect proof.
(b) a proof by contradiction.
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• Prove an implication of the form:

by proving that:
pi → q, i = 1,2, …, n

(p1 ∨ p2 ∨ … ∨ pn) → q
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• Example (Rosen p.67):
Show that |xy| = |x||y|, where x and y are real 
numbers.
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• Since ( p↔q ) ↔ ( p→q ) ∧ ( q→p ), then prove 
both p→q and q→p

• Equivalent propositions (p1 ↔ p2 ↔ … ↔ pn) are 
proven by proving p1→p2, p2→p3, …, pn→p1
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• Example (Rosen p.68):
Show that these statements are equivalent:
p1: n is an even integer.
p2: n -1 is an odd integer.
p3: n2 is an even integer.
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• Existence proofs: A proof of ∃xP(x)
• Constructive existence proof:

– Find an element c such that P(c) is true.
• Non-constructive existence proof:

– Do not find an element c such that P(c) is true, but use 
some other ways.
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• Example (Rosen p.69):
Show that ∃x ∃y ( xy is rational.)
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• Uniqueness proofs: showing that there is a 
unique element x such that P(x).
1) Existence:

Show that ∃xP(x)
2) Uniqueness:

Show that if y ≠ x, P(y) is false.
• is the same as proving:

∃∃x( x( P(xP(x))∧∧ ∀∀y( y( yy≠≠xx →→ ¬¬P(yP(y)) ))) )
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• Example (Rosen p.70):
Show every integer has a unique additive 
inverse. ( If p is an integer, there exists a unique 
integer q such that p+q = 0. )
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⌧⌧

• Show that ∀xP(x) is false.

• Example (Rosen p.70):
“Every positive integer is the sum of the squares 
of three integers” ??


