

- Provide justification of the steps used to show that a conclusion follows a set of hypotheses.
- Each uses a tautology as its basis.
- E.g.:

The law of detachment or Modus ponens

p $p \rightarrow q$ ∴ q (Based on $(p \land (p \rightarrow q)) \rightarrow q$)

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Addition	<u>p .</u> ∴ p ∨ q	Modus tollens	¬q <u>p→q</u> ∴ ¬p
Simplification	<u>p ∧ q</u> ∴ p	Hypothetical syllogism	$p \rightarrow q$ $q \rightarrow r$ $\therefore q \rightarrow r$
Conjunction	p <u>q</u> ∴p∆q	Disjunction syllogism	p∨q <u>¬p</u> . ∴ q
Modus ponen	p <u>q → q</u> ∴ q	Resolution	

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Rules of Inference

• Example (Rosen p.57):

If it rains today, we will not have a barbecue today. If we do not have a barbecue today, we will have it tomorrow

Therefore, if it rains today, then we will have a barbecue tomorrow.

Which rule of inference is used?

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Valid Arguments

• An argument is called *valid* if whenever all the hypotheses are true, the conclusion is also true.

Showing that $(p_1 \land p_2 \land \dots \land p_n) \rightarrow q$

is true.

• Example:

If it floods today, Chula will close. Chula is not closed today. Therefore, it did not flood today.

Which rule of inference is used?

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Valid Arguments

• Example (Rosen p.59):

h₁: If you send me an email, I will finish writing this program.

- h₂: If you do not send me an email, I will go to bed early.
- h₃: If I go to bed early, I will wake up feeling refreshed.
- Lead to?: If I do not finish writing program, then I will wake up feeling refreshed.

Valid Arguments

• Example (Rosen p.60): Show that $(p \land q) \lor r$ and $r \rightarrow s$ imply $p \lor s$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Rules of Inference: Quantified Statements

• Example (Rosen p.62):

Show that:

A student in this class has not read the book.

Everyone in this class passed the first exam. imply:

Someone who passed the first exam has not read the book.

Rules of Inference:

Quantified Statements

Universal Instantiation	$\frac{\forall x P(x)}{P(c)}$	
Universal Generalization	P(c) for an arbitrary c ∴ ∀xP(x)	
Existential Instantiation	$\exists x P(x)$ ∴ P(c) for some element c	
Existential Generalization	P(c) for some element c ∴ ∃xP(x)	

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Atiwong Suchato

Methods of Proving Theorems

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

- Suppose we want to prove a statement s
- Start by assuming **s** is true.
- Show that s implies a contradiction. (– s $\textbf{\textit{F}})$
- Then, $\neg s$ must be false (or s must be true).

- <u>Example</u> (Rosen p.64):
 P(n) = "If n > 1, then n² > n"
 Show that P(0) is true.
- Example (Rosen p.64):
 P(n) = "If a and b are positive integers with a ≥ b, then aⁿ ≥ bⁿ"
 Show that P(0) is true.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Proof by Contradiction

• Example:

Show that at least 10 of any 64 days chosen must fall on the same day of the week.

Proof $p \rightarrow q$ by Contradiction

- Proof by Contradiction
 - Start by assuming $\neg (p \rightarrow q)$ is true.
 - That means $p \land \neg q$ is true. (since $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$)
 - Show that $\boldsymbol{p} \wedge \neg \boldsymbol{q}$ is a contradiction
 - Then, $\neg (p \rightarrow q)$ must be false (or $(p \rightarrow q)$ must be true).

Faculty of Engineering, Chulalongkorn University

Atiwong Suchato

Proof by Cases

• Prove an implication of the form:

 $(p_1 \lor p_2 \lor \ldots \lor p_n) \to q$

by proving that:

$$p_i \rightarrow q, i = 1, 2, ..., n$$

• Example:

Prove that "If *n* is an integer and *n*³+5 is odd, then *n* is even". Using:
(a) an indirect proof.
(b) a proof by contradiction.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Proof by Cases

Example (Rosen p.67):
 Show that |xy| = |x||y|, where x and y are real numbers.

Proof of $p \leftrightarrow q$

- Since (p↔q) ↔ (p→q) ∧ (q→p), then prove both p→q and q→p
- Equivalent propositions (p₁ ↔ p₂ ↔ ... ↔ p_n) are proven by *proving* p₁→p₂, p₂→p₃, ..., p_n→p₁

Proof of Proposition Involving Quantifiers

- Existence proofs: A proof of $\exists x P(x)$
- Constructive existence proof:
 - Find an element c such that P(c) is true.
- Non-constructive existence proof:
 - Do not find an element *c* such that P(*c*) is true, but use some other ways.

 <u>Example</u> (Rosen p.68): Show that these statements are equivalent: p₁: *n* is an even integer. p₂: *n* -1 is an odd integer. p₃: *n*² is an even integer.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Existence Proofs

 Example (Rosen p.69): Show that ∃x ∃y (x^y is rational.)

Proof of Proposition Involving Quantifiers

- <u>Uniqueness proofs</u>: showing that there is a unique element x such that P(x).
 - 1) Existence:

Show that $\exists x P(x)$

2) Uniqueness:

Show that if $y \neq x$, P(y) is false.

• is the same as proving:

$\exists x (\mathsf{P}(x) \land \forall y (y \neq x \rightarrow \neg \mathsf{P}(y)))$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Counterexamples

- Show that $\forall x P(x)$ is false.
- Example (Rosen p.70):

"Every positive integer is the sum of the squares of three integers" ??

• <u>Example (Rosen p.70)</u>:

Show every integer has a unique additive inverse. (If p is an integer, there exists a unique integer q such that p+q = 0.)

Atiwong Suchato Faculty of Engineering, Chulalongkorn University