Proof Strategy \& Mathematical Induction

- Readings:

Proof Strategy:
Rosen Section 3.1
Mathematical Induction:
Rosen Section 3.3

Forward \& Backward Reasoning

- Example (Rosen p.215):

If a and b are distinct positive real numbers, $(a+b) / 2>\sqrt{a b}$

Forward \& Backward Reasoning

- Forward reasoning:
- To prove $p \rightarrow q($ or $\neg q \rightarrow \neg p)$:
- Start with p(or $\neg q$)
- Use axioms + known theorems + etc. in steps.
- Lands the conclusion $\mathrm{q}($ or $\neg \mathrm{p}$).
- Works with simple results.
- Backward reasoning:
- Start with the conclusion instead.

Proof by Cases

- Example (Rosen p.216):

If n is an integer not divisible by 2 or 3 , then $n^{2}-1$ is divisible by 24 .

- Example:

Show that there are no integers x and y such that $3 x^{2}-8 y=1$

- Example:

Prove that there are infinitely many primes.

Atiwong Suchato
Faculty of Engineering, Chulalongkorn University

- Example (Rosen p.217):

Prove that there are infinitely many primes of the form $4 k+3$, where k is a nonnegative integer.

Mathematical Induction

- A proof by induction that $P(n)$ is true for every positive integer n consists of 2 steps:

BASIC STEP: Show that $P(1)$ is true.
INDUCTIVE STEP:
Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

- Example (Rosen p.240):

Prove that the sum of the first n odd positive integers is n^{2}.
$P(n)$:
Basic Step.
Inductive Step:

- Example (Rosen p.241):

Prove that $n<2^{n}$ for all positive integers n.
$P(n)$:
Basic Step:
Inductive Step:

Ativong Suchato
Faculty of Engineering, Chulalongkorn University

- Example (Rosen p.241):

Prove that $n^{3}-n$ is divisible by 3 all positive integers n.
$P(n)$:
Basic Step:
Inductive Step:

Mathematical Induction

- Sometimes we want to prove that $P(n)$ is true for $n=b, b+1, b+2, \ldots$ where b is an integer other than 1 .

BASIC STEP: Show that $P(b)$ is true.
INDUCTIVE STEP:
Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

Example (Rosen p.243):
Prove that $\quad H_{2^{n}} \geq 1+\frac{n}{2} \quad H_{j}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{j}$
whenever n is a nonnegative integer.
$P(n)$.
Basic Step:

Proving Mathematical Induction

- The well-ordering property:

Every nonempty set of nonnegative integers has a least element.

Inductive Step:

Proving Mathematical Induction

- Show that $P(n)$ must be true for all positive integers when $P(1)$ and $P(k) \rightarrow P(k+1)$ are true.
- Assume that $P(n)$ is not true for at least a positive integer. Then, the set S for which $P(n)$ is false is nonempty.
- S has the least element, called $m .(m \neq 1)$
- Since $m-1<m$, then $m-1 \notin S$ (or $P(m-1)$ is true)
- But $P(m-1) \rightarrow P(m)$ is true. So, $P(m)$ must be true.
- This contradicts the choice of m.

Strong Induction

- A proof by induction that $P(n)$ is true for every positive integer n consists of 2 steps:
- Use a different induction step.

BASIC STEP: Show that $P(1)$ is true.
INDUCTIVE STEP:
Show that $[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$ is true for every positive integer k

- Example (Rosen p.250):

Show that if n is an integer greater than 1 , then n can be written as the product of primes.
$P(n)$:
Basic Step:
Inductive Step:

- Example (Rosen p.250):

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5cent stamps.

