Counting II

- Readings:

Basic counting principles
Rosen section 4.4-4.6

The Binomial Theorem

$$
(x+y)^{3}=(x+y)(x+y)(x+y)
$$

- $\mathrm{C}(\mathrm{n}, \mathrm{r})$ is also called a binomial coefficient.

The Binomial Theorem

- A binomial expression is the sum of two terms, such as $(x+y)$
- The binomial theorem concerns the expansion of powers of binomial expressions.
- E.g.: $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$

The Binomial Theorem

$$
\begin{aligned}
(x+y)^{n}= & \sum_{j=0}^{n} c(n, j) x^{n-j} y^{j} \\
= & c(n, 0) x^{n}+c(n, 1) x^{n-1} y+c(n, 2) x^{n-2} y^{2}+ \\
& \ldots+c(n, n-1) x y^{n-1}+c(n, n) y^{n}
\end{aligned}
$$

Example (Rosen p.328):
$(x+y)^{4}=$
What is the coef. of $x^{12} y^{13}$ in the expansion of $(x+y)^{25}$?

- Example (Rosen p.328):

What is the coef. of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$?

- Show that:

Let n be a nonnegative integer. Then:

$$
\sum_{k=0}^{n} 2^{k} c(n, k)=3^{n}
$$

- Show that:

Let n be a positive integer. Then:

$$
\sum_{k=0}^{n}(-1)^{k} c(n, k)=0
$$

Pascal's Identity

Let n and k be positive integers with $n \geq k$, Then $c(n+1, k)=c(n, k-1)+c(n, k)$

Proof:

Pascal's Triangle

- Pascal's identity together with initial conditions $c(n, 0)=c(n, n)=1$ for all integers n can be used to recursively define binomial coefficients.

Vandermonde's Identity

- Let m, n, and r be nonnegative integers with r not exceeding either m or n. Then:

$$
c(m+n, r)=\sum_{k=0}^{r} c(m, r-k) c(n, k)
$$

Proof:

- Show that:

If n is a nonnegative integer. Then:

$$
c(2 n, n)=\sum_{k=0}^{n} c(n, k)^{2}
$$

Generalized Permutations and Combinations

- Permutations with repetition
- Combinations with repetition
- Permutations with indistinguishable objects
- Distributing objects into boxes

Permutations with Repetition

- Easily done using product rule.
- Example:

How many strings of length n can be formed from the English alphabets, if each alphabet can be used no more than once?

How many strings can be formed, if repetition is allowed?

Ativong Suchato
Faculty of Engineering, Chulalongkorn University

- Example:

A bucket containing 5 different balls. We pick 3 balls randomly from the bucket at the same time.

How many ways can the balls be selected?

How many sequences if we put the drawn ball back in before we draw another ball?

- Example:

A bucket containing 5 different balls. We pick 3 balls randomly from the bucket at the same time.

How many ways can the balls be selected, if repetitions are allowed?
i.e.: We draw one ball at a time and put the drawn ball back in before drawing another one, while we do not care about the order. or
Instead of only five balls in the bucket, there are five types of balls where there are more than 3 balls for each type.

Combinations with Repetition

- There are $\boldsymbol{c}(\boldsymbol{n}-\mathbf{1}+\boldsymbol{r}, \boldsymbol{r})$ r-combinations from a set with n elements when repetition of elements is allowed.
- Example (Rosen p.338):

There are 4 types of cookies in a cookie shop. How many ways can 6 cookies be chosen?

Combinations with Repetition

Ativong Suchato
Faculty of Engineering, Chulalongkorn University

- Example (Rosen p.338):

How many solutions does the equation $x_{1}+x_{2}+x_{3}=11$
have, where x_{1}, x_{2}, and x_{3} are nonnegative integer?

Permutations with Indistinguishable Objects

- Example:

How many different strings can be made by reordering the letters of the word

PEPPERCORN

Distributing Objects into Boxes

- Example (Rosen p.341):

How many ways are there to distribute hands of 5 cards to each of four players from the standard deck of 52 ?

Permutations with Indistinguishable

Objects

- The number of different permutations of \boldsymbol{n} objects, where there are
$\boldsymbol{n}_{\mathbf{1}}$ indistinguishable of type 1,
$\boldsymbol{n}_{\mathbf{2}}$ indistinguishable of type $2, \ldots$, and
$\boldsymbol{n}_{\boldsymbol{k}}$ indistinguishable of type k,
is:

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Distributing Objects into Boxes

- The number of ways to distribute n distinguishable objects into k distinguishable boxes so that $\boldsymbol{n}_{\boldsymbol{i}}$ objects are placed into box i, i $=1,2, \ldots, k$, equals

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

