Recurrence Relations

- <u>Readings:</u>
 - Recurrence Relations Rosen section 6.1-6.2

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Recurrence Relations

• Example (Rosen p.402):

Determine whether $a_n=3n$, for every nonnegative integer *n*, is a solution of

$$a_n = 2a_{n-1} - a_{n-2}; \quad n = 2, 3, ...$$

- A *recurrence relation* for the sequence $\{a_n\}$ is an equation that <u>expresses a_n in terms of one or</u> <u>more of the previous terms</u>, a_0, a_1, \dots, a_{n-1} .
- A sequence is called a *solution* of a recurrence relation if its terms <u>satisfy the recurrence relation</u>.
- The *initial conditions* <u>specify the terms that</u> <u>precede the first term</u> where the recurrence relation takes effect.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Modeling with Recurrence Relations

• Example (Rosen p.406):

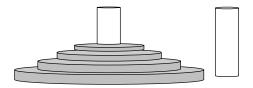
How many bit strings of length *n* that do not have two consecutive zeros?

٢

The Tower of Hanoi

<u>Rules</u>:

Move a disk at a time from one peg to another. Never place a disk on a smaller disk. The goal is to have all disk on the 2nd peg in order of size.



Find H_n , the number of moves needed to solve the problem with *n* disks.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Linear Homogeneous Recurrence Rel.

- $a_n = a_{n-1} + a_{n-2}^2$
- $H_n = 2H_{n-1} + 1$
- $B_n = nB_{n-1}$
- $f_n = f_{n-1} + f_{n-2}$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Solving Recurrence Relations

• A *linear homogeneous* recurrence relation can be solved in a systematic way.

Linear homogeneous recurrence relation of degree k with constant coefficients

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$

where $c_1, c_2, ..., c_k$ are real numbers and $c_k \neq 0$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Solving: Linear Homogeneous

Recurrence Relations

- Recurrence Relation:
 - $a_n c_1 a_{n-1} c_2 a_{n-2} \dots c_k a_{n-k} = 0$
- Characteristic equation: $r^{k} - c_1 r^{k-1} - c_2 r^{k-2} \dots - c^{k} = 0$

Example:

$$a_n = a_{n-1} + 3a_{n-2}$$

 $b_n = 2b_{n-1} - b_{n-2} + 5b_{n-3}$
 $d_n = d_{n-2} + d_{n-5}$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Solving: Linear Homogeneous

Recurrence Relations

Let c₁, c₂, ..., c_k be real numbers. Suppose the characteristic equation:

 $r^{k} - C_{1}r^{k-1} - C_{2}r^{k-2} \dots - C^{k} = 0$

has <u>*k* distinct roots</u> $r_1, r_2, ..., r_k$. Then a sequence $\{a_n\}$ is a solution of the **recurrence relation**:

 $a_n - c_1 a_{n-1} - c_2 a_{n-2} - \dots - c_k a_{n-k} = 0$

if and only if:

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$

for $n = 0, 1, 2, \dots$ Where $\alpha_1, \alpha_2, \dots, \alpha_k$ are constants.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• Example (Rosen p.417):

What is the solution of the recurrence relation:

 $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$? <u>Example</u> (Rosen p.415):

What is the solution of the recurrence relation:

$$a_n = a_{n-1} + 2a_{n-2}$$

with $a_0 = 2$ and $a_1 = 7$?

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Repeated Roots

- Suppose the characteristic equation has t distinct roots r₁, r₂, ..., r_t with multiplicities m₁, m₂, ..., m_t.
- <u>Solution</u>:

$$a_{n} = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_{l-1}}n^{m_{l-1}})r_{1}^{n} + (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_{l-1}}n^{m_{l-1}})r_{2}^{n} + \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_{t-1}}n^{m_{t-1}})r_{t}^{n}$$

- Solving: Linear Nonhomogeneous • Example (Rosen p.418): What is the solution of the recurrence relation: **Recurrence Relations** $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n)$ with $a_0 = 1$, $a_1 = -2$ and $a_2 = -1$? Associated homogeneous recurrence relation $\{a_{n}^{h}\}$ $\{a_{n}^{p}\}$ $\{a_n\} = \{a_n^h\} + \{a_n^p\}$ Atiwong Suchato Atiwong Suchato Faculty of Engineering, Chulalongkorn University Faculty of Engineering, Chulalongkorn University Solving: Linear Nonhomogeneous • Example (Rosen p.420): **Recurrence Relations**
 - Key:

1 – Solve for a solution of the associated homogeneous part.

- 2 Find a particular solution.
- 3 Sum the solutions in 1 and 2
- There is no general method for finding the particular solution for every F(n)
- There are general techniques for some F(n) such as polynomials and powers of constants.

Find the solutions of $a_n = 3a_{n-1} + 2n$ with $a_1 = 3$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University • <u>Example</u> (Rosen p.421): Find the solutions of $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• Example (Rosen p.422):

What form does a particular solution of

$$a_n = 6a_{n-1} - 9a_{n-2} + F(n)$$

have when:

F(n)=3n, $F(n)=n3^n$, $F(n)=n^22^n$, $F(n)=(n^2+1)3^n$?

Particular Solutions

$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n$$

where b_0, b_1, \dots, b_t and s are real numbers.

When **s** is **not** a root of the characteristic equation:

The particular solution is of the form:

$$(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$$

When **s** is a root of multiplicity **m**:

The particular solution is of the form:

 $n^{m}(p_{t}n^{t} + p_{t-1}n^{t-1} + \dots + p_{1}n + p_{0}) s^{n}$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

